An assessment of discretizations for convection-dominated convection-diffusion equations

被引:61
作者
Augustin, Matthias [2 ]
Caiazzo, Alfonso [1 ]
Fiebach, Andre [1 ]
Fuhrmann, Juergen [1 ]
John, Volker [1 ,3 ]
Linke, Alexander [1 ]
Umla, Rudolf [4 ]
机构
[1] Leibniz Inst Forsch Verbund Berlin eV WIAS, Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Univ Kaiserslautern, Dept Math, Geomath Grp, D-67653 Kaiserslautern, Germany
[3] Free Univ Berlin, Dept Math & Comp Sci, D-14195 Berlin, Germany
[4] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England
关键词
Dominating convection; Exponentially fitted finite volume scheme; Stabilized finite element methods; Hemker problem; FINITE-ELEMENT-METHODS; DIMINISHING SOLD METHODS; SPURIOUS OSCILLATIONS; SYSTEMS;
D O I
10.1016/j.cma.2011.08.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The performance of several numerical schemes for discretizing convection-dominated convection-diffusion equations will be investigated with respect to accuracy and efficiency. Accuracy is considered in measures which are of interest in applications. The study includes an exponentially fitted finite volume scheme, the Streamline-Upwind Petrov-Galerkin (SUPG) finite element method, a spurious oscillations at layers diminishing (SOLD) finite element method, a finite element method with continuous interior penalty (CIP) stabilization, a discontinuous Galerkin (DG) finite element method, and a total variation diminishing finite element method (FEMTVD). A detailed assessment of the schemes based on the Hemker example will be presented. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3395 / 3409
页数:15
相关论文
共 40 条
[1]  
ALLEN DND, 1955, QUART J MECH APPL MA, V8, P129, DOI [10.1093/qjmam/8.2.129., DOI 10.1093/QJMAM/8.2.129]
[2]   ITERATIVE PROCEDURES FOR NONLINEAR INTEGRAL EQUATIONS [J].
ANDERSON, DG .
JOURNAL OF THE ACM, 1965, 12 (04) :547-&
[3]  
AUGUSTIN M, 2009, THESIS U SAARLANDES
[4]   STREAMLINE UPWIND PETROV-GALERKIN FORMULATIONS FOR CONVECTION DOMINATED FLOWS WITH PARTICULAR EMPHASIS ON THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BROOKS, AN ;
HUGHES, TJR .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 32 (1-3) :199-259
[5]   A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty [J].
Burman, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :2012-2033
[6]   Stabilized Galerkin approximation of convection-diffusion-reaction equations: Discrete maximum principle and convergence [J].
Burman, E ;
Ern, A .
MATHEMATICS OF COMPUTATION, 2005, 74 (252) :1637-1652
[7]   Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems [J].
Burman, E ;
Hansbo, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (15-16) :1437-1453
[8]   Algorithm 832: UMFPACK V4.3 - An unsymmetric-pattern multifrontal method [J].
Davis, TA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2004, 30 (02) :196-199
[9]  
Douglas T., 1976, Methods in Applied Sciences, Lecture Notes inPhysics, V58, P207
[10]   A finite volume scheme for nonlinear parabolic equations derived from one-dimensional local dirichlet problems [J].
Eymard, R ;
Fuhrmann, J ;
Gärtner, K .
NUMERISCHE MATHEMATIK, 2006, 102 (03) :463-495