An assessment of discretizations for convection-dominated convection-diffusion equations

被引:61
作者
Augustin, Matthias [2 ]
Caiazzo, Alfonso [1 ]
Fiebach, Andre [1 ]
Fuhrmann, Juergen [1 ]
John, Volker [1 ,3 ]
Linke, Alexander [1 ]
Umla, Rudolf [4 ]
机构
[1] Leibniz Inst Forsch Verbund Berlin eV WIAS, Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Univ Kaiserslautern, Dept Math, Geomath Grp, D-67653 Kaiserslautern, Germany
[3] Free Univ Berlin, Dept Math & Comp Sci, D-14195 Berlin, Germany
[4] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England
关键词
Dominating convection; Exponentially fitted finite volume scheme; Stabilized finite element methods; Hemker problem; FINITE-ELEMENT-METHODS; DIMINISHING SOLD METHODS; SPURIOUS OSCILLATIONS; SYSTEMS;
D O I
10.1016/j.cma.2011.08.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The performance of several numerical schemes for discretizing convection-dominated convection-diffusion equations will be investigated with respect to accuracy and efficiency. Accuracy is considered in measures which are of interest in applications. The study includes an exponentially fitted finite volume scheme, the Streamline-Upwind Petrov-Galerkin (SUPG) finite element method, a spurious oscillations at layers diminishing (SOLD) finite element method, a finite element method with continuous interior penalty (CIP) stabilization, a discontinuous Galerkin (DG) finite element method, and a total variation diminishing finite element method (FEMTVD). A detailed assessment of the schemes based on the Hemker example will be presented. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3395 / 3409
页数:15
相关论文
共 40 条
[21]   On the performance of SOLD methods for convection-diffusion problems with interior layers [J].
John, V. ;
Knobloch, P. .
INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND MATHEMATICS, 2007, 1 (2-4) :245-258
[22]   MooNMD - A program package based on mapped finite element methods [J].
John, Volker ;
Matthies, Gunar .
Computing and Visualization in Science, 2004, 6 (2-3) :163-170
[23]   Nonconforming streamline-diffusion-finite-element-methods for convection-diffusion problems [J].
John, V ;
Maubach, JM ;
Tobiska, L .
NUMERISCHE MATHEMATIK, 1997, 78 (02) :165-188
[24]   On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations:: Part II -: Analysis for P1 and Q1 finite elements [J].
John, Volker ;
Knobloch, Petr .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (21-24) :1997-2014
[25]   On spurious oscillations at layers diminishing (SOLD) methods for convection-diffusion equations: Part I - A review [J].
John, Volker ;
Knobloch, Petr .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (17-20) :2197-2215
[26]   A posteriori optimization of parameters in stabilized methods for convection-diffusion problems - Part I [J].
John, Volker ;
Knobloch, Petr ;
Savescu, Simona B. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (41-44) :2916-2929
[27]   Simulations of population balance systems with one internal coordinate using finite element methods [J].
John, Volker ;
Mitkova, Teodora ;
Roland, Michael ;
Sundmacher, Kai ;
Tobiska, Lutz ;
Voigt, Andreas .
CHEMICAL ENGINEERING SCIENCE, 2009, 64 (04) :733-741
[28]  
Kanschat G., 2007, ADV NUMERICAL MATH
[29]   Stabilized finite element methods with shock capturing for advection-diffusion problems [J].
Knopp, T ;
Lube, G ;
Rapin, G .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (27-28) :2997-3013
[30]   Algebraic flux correction I.: Scalar conservation laws [J].
Kuzmin, D ;
Möller, M .
FLUX-CORRECTED TRANSPORT: PRINCIPLES, ALGORITHMS, AND APPLICATIONS, 2005, :155-206