Pattern recognition and optimal parameter selection in premature ventricular contraction classification

被引:11
作者
Jekova, I [1 ]
Bortolan, G [1 ]
Christov, I [1 ]
机构
[1] Bulgarian Acad Sci, Ctr Biomed Engn, Sofia, Bulgaria
来源
COMPUTERS IN CARDIOLOGY 2004, VOL 31 | 2004年 / 31卷
关键词
D O I
10.1109/CIC.2004.1442946
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Analyses of electrocardiographic pattern recognition parameters for premature ventricular contraction (PVC) and Normal (N) beat classification are presented Twenty-six parameters are defined: 11x2 for the two ECG leads, 3 for vectorcardiogram (VCG) and width of the complex. Some of them include: amplitudes of maximal positive and negative peaks, area of the absolute values, area of positive and negative values, number of samples with 70% higher amplitude then that of the highest peak, amplitude and angle of the QRS vector in a VCG plane. They are measured for all N and PVC heart beats in the MIT-BIH arrhythmia database. The classification ability of each parameter is tested using discriminant analysis. Considering both leads 7 parameters with highest discriminant power for N and PVC are extracted and a specificity of 96.6% and a sensitivity of 90.5% are obtained Taking into account relatively all parameters a specificity of 97.3% and a sensitivity of 93.3% are achieved.
引用
收藏
页码:357 / 360
页数:4
相关论文
共 14 条
[1]  
Al-Nashash H, 2000, Technol Health Care, V8, P363
[2]   Ranking of pattern recognition parameters for premature ventricular contractions classification by neural networks [J].
Christov, I ;
Bortolan, G .
PHYSIOLOGICAL MEASUREMENT, 2004, 25 (05) :1281-1290
[3]  
CHRISTOV II, ELECTROTECHNICS ELEC, P43
[4]   Developments in ECG acquisition, preprocessing, parameter measurement, and recording [J].
Daskalov, IK ;
Dotsinsky, IA ;
Christov, II .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 1998, 17 (02) :50-58
[5]   THE TIME-SEQUENCED ADAPTIVE FILTER [J].
FERRARA, ER ;
WIDROW, B .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1981, 28 (06) :519-523
[6]   Classification of cardiac arrhythmias using fuzzy ARTMAP [J].
Ham, FM ;
Han, S .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1996, 43 (04) :425-430
[7]   Clustering ECG complexes using Hermite functions and self-organizing maps [J].
Lagerholm, M ;
Peterson, C ;
Braccini, G ;
Edenbrandt, L ;
Sörnmo, L .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2000, 47 (07) :838-848
[8]   Adaptive estimation of QRS complex wave features of ECG signal by the hermite model [J].
Laguna, P ;
Jane, R ;
Olmos, S ;
Thakor, NV ;
Rix, H ;
Caminal, P .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1996, 34 (01) :58-68
[9]  
LAGUNA P, 1992, ADAPTIVE FEATURE EXT, P613
[10]   ECG pattern recognition and classification using non-linear transformations and neural networks: A review [J].
Maglaveras, N ;
Stamkopoulos, T ;
Diamantaras, K ;
Pappas, C ;
Strintzis, M .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 1998, 52 (1-3) :191-208