Crystal structures of the tricorn interacting factor F3 from Thermoplasma acidophilum, a zinc aminopeptidase in three different conformations

被引:67
作者
Kyrieleis, OJP
Goettig, P
Kiefersauer, R
Huber, R
Brandstetter, H
机构
[1] Max Planck Inst Biochem, D-82152 Martinsried, Germany
[2] Proteros Biostruct GmbH, D-82152 Martinsried, Germany
关键词
zinc aminopeptidase; gluzincin; tricorn protease; proteasome; supermolecular complexes;
D O I
10.1016/j.jmb.2005.03.070
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The tricorn interacting factor F3 is an 89 kDa zinc aminopeptidase from the archaeon Thermoplasma acidophilum. Together with the tricorn interacting factors F1 and F2, F3 degrades the tricorn protease products and thus completes the proteasomal degradation pathway by generating free amino acids. Here, we present the crystal structures of F3 in three different conformations at 2.3 angstrom resolution. The zinc aminopeptidase is composed of four domains: an N-terminal saddle-like beta-structure domain; a thermolysin-like catalytic domain; a small barrel-like beta-structure domain; and an alpha-helical C-terminal domain, the latter forming a deep cavity at the active site. Three crystal forms provide snapshots of the molecular dynamics of F3 where the C-terminal domain can adapt to form an open, an intermediate and a nearly closed cavity, respectively. With the conserved Zn2+-binding motifs HEXXH and NEXFA as well as the N-terminal substrate-anchoring glutamate residues, F3 together with the leukotriene A4 hydrolase, represents a novel gluzincin subfamily of aminoproteases. We discuss the functional implications of these structures with respect to the underlying catalytic mechanism, substrate recognition and processing, and possible component interactions. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:787 / 800
页数:14
相关论文
共 32 条
[11]   FAMILIES OF ZINC METALLOPROTEASES [J].
HOOPER, NM .
FEBS LETTERS, 1994, 354 (01) :1-6
[12]   A novel free-mounting system for protein crystals: transformation and improvement of diffraction power by accurately controlled humidity changes [J].
Kiefersauer, R ;
Than, ME ;
Dobbek, H ;
Gremer, L ;
Melero, M ;
Strobl, S ;
Dias, JM ;
Soulimane, T ;
Huber, R .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2000, 33 :1223-1230
[13]   Navigation inside a protease:: Substrate selection and product exit in the tricorn protease from Thermoplasma acidophilum [J].
Kim, JS ;
Groll, M ;
Musiol, HA ;
Behrendt, R ;
Kaiser, M ;
Moroder, L ;
Huber, R ;
Brandstetter, H .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 324 (05) :1041-1050
[14]   MOLSCRIPT - A PROGRAM TO PRODUCE BOTH DETAILED AND SCHEMATIC PLOTS OF PROTEIN STRUCTURES [J].
KRAULIS, PJ .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1991, 24 :946-950
[15]   MAIN-CHAIN BOND LENGTHS AND BOND ANGLES IN PROTEIN STRUCTURES [J].
LASKOWSKI, RA ;
MOSS, DS ;
THORNTON, JM .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 231 (04) :1049-1067
[16]   Characterization of Glu350 as a critical residue involved in the N-terminal amine binding site of aminopeptidase N (EC 3.4.11.2):: Insights into its mechanism of action [J].
Luciani, N ;
Marie-Claire, C ;
Ruffet, E ;
Beaumont, A ;
Roques, BP ;
Fournie-Zaluski, MC .
BIOCHEMISTRY, 1998, 37 (02) :686-692
[17]  
NICHOLLS A, 1993, BIOPHYS J, V64, pA166
[18]   THE ALPHA/BETA-HYDROLASE FOLD [J].
OLLIS, DL ;
CHEAH, E ;
CYGLER, M ;
DIJKSTRA, B ;
FROLOW, F ;
FRANKEN, SM ;
HAREL, M ;
REMINGTON, SJ ;
SILMAN, I ;
SCHRAG, J ;
SUSSMAN, JL ;
VERSCHUEREN, KHG ;
GOLDMAN, A .
PROTEIN ENGINEERING, 1992, 5 (03) :197-211
[19]   Processing of X-ray diffraction data collected in oscillation mode [J].
Otwinowski, Z ;
Minor, W .
MACROMOLECULAR CRYSTALLOGRAPHY, PT A, 1997, 276 :307-326
[20]  
Sambrook J., 2002, MOL CLONING LAB MANU