No-Go theorem in spacetimes with two commuting spacelike Killing vectors

被引:23
作者
Wang, AZ [1 ]
机构
[1] Baylor Univ, Dept Phys, CASPER, Waco, TX 76798 USA
关键词
horizon; Killing vector;
D O I
10.1007/s10714-005-0166-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Four-dimensional Riemannian spacetimes with two commuting spacelike Killing vectors are studied in Einstein's theory of gravity, and found that no outer apparent horizons exist, provided that the dominant energy condition holds.
引用
收藏
页码:1919 / 1926
页数:8
相关论文
共 69 条
[11]   Thermodynamics and stability of hyperbolic charged black holes [J].
Cai, RG ;
Wang, AZ .
PHYSICAL REVIEW D, 2004, 70 (06) :064013-1
[12]   A note on thermodynamics of black holes in Lovelock gravity [J].
Cai, RG .
PHYSICS LETTERS B, 2004, 582 (3-4) :237-242
[13]   Boosted domain wall and charged Kaigorodov space [J].
Cai, RG .
PHYSICS LETTERS B, 2003, 572 (1-2) :75-80
[14]   Gauss-Bonnet black holes in AdS spaces [J].
Cai, RG .
PHYSICAL REVIEW D, 2002, 65 (08) :9
[15]   Topological black holes in the dimensionally continued gravity [J].
Cai, RG ;
Soh, KS .
PHYSICAL REVIEW D, 1999, 59 (04)
[16]   Topological dilaton black holes [J].
Cai, RG ;
Ji, JY ;
Soh, KS .
PHYSICAL REVIEW D, 1998, 57 (10) :6547-6550
[17]   Propagation of vacuum polarized photons in topological black hole spacetimes [J].
Cai, RG .
NUCLEAR PHYSICS B, 1998, 524 (03) :639-657
[18]   Black plane solutions in four-dimensional spacetimes [J].
Cai, RG ;
Zhang, YZ .
PHYSICAL REVIEW D, 1996, 54 (08) :4891-4898
[19]  
Chandrasekhar S., 1983, The mathematical theory of black holes
[20]  
Cho YM, 2002, PHYS REV D, V66, DOI 10.1103/PhysRevD.66.024044