Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract

被引:178
作者
Flint, Harry J. [1 ]
Bayer, Edward A. [1 ]
机构
[1] Rowett Res Inst, Microbial Ecol Grp, Aberdeen AB21 9SB, Scotland
来源
INCREDIBLE ANAEROBES: FROM PHYSIOLOGY TO GENOMICS TO FUELS | 2008年 / 1125卷
关键词
lignocellulose; rumen; cellulosome; Ruminococcus; Prevotella; large intestine; microbial ecology;
D O I
10.1196/annals.1419.022
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Degradation of lignocellulosic plant material in the mammalian digestive tract is accomplished by communities of anaerobic microorganisms that exist in symbiotic association with the host. Catalytic domains and substrate-binding modules concerned with plant polysaccharide degradation are found in a variety of anaerobic bacteria, fungi, and protozoa from the mammalian gut. The organization of plant cell wall-degrading enzymes, however, varies widely. The cellulolytic gram-positive bacterium Ruminococcus flavefaciens produces an elaborate cellulosomal enzyme complex that is anchored to the bacterial cell wall; assembly of the complex involves at least five different dockerin:cohesin specificities, and the R. flavefaciens genome encodes at least 180 dockerin-containing proteins that encompass a wide array of catalytic and binding activities. On the other hand, in the cellulolytic protozoan, Polyplastron multivesiculatum, individual plant cell wall-degrading enzymes appear to be secreted into food vacuoles, while the gram-negative bacterium Prevotella bryantii appears to possess a sequestration-type system for the utilization of soluble xylans. The system that is employed for polysaccharide utilization must play a major role in defining the ecological niche that each organism occupies within a complex gut community. 16S rRNA analyses are also revealing uncultured bacterial species closely adherent to fibrous substrates in the rumen and in the large intestine of animals and humans. The true complexity, both at a single organism and community level, of the microbial enzyme systems that allow animals to digest plant material is beginning to become apparent.
引用
收藏
页码:280 / 288
页数:9
相关论文
共 60 条
[1]   Molecular diversity, cultivation, and improved detection by fluorescent in situ hybridization of a dominant group of human gut bacteria related to Roseburia spp. or Eubacterium rectale [J].
Aminov, Rustam I. ;
Walker, Alan W. ;
Duncan, Sylvia H. ;
Harmsen, Hermie J. M. ;
Welling, Gjalt W. ;
Flint, Harry J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (09) :6371-6376
[2]   BIOCHEMICAL-EVIDENCE THAT STARCH BREAKDOWN BY BACTEROIDES-THETAIOTAOMICRON INVOLVES OUTER-MEMBRANE STARCH-BINDING SITES AND PERIPLASMIC STARCH-DEGRADING ENZYMES [J].
ANDERSON, KL ;
SALYERS, AA .
JOURNAL OF BACTERIOLOGY, 1989, 171 (06) :3192-3198
[3]   Three multidomain esterases from the cellulolytic rumen anaerobe Ruminococcus flavefaciens 17 that carry divergent dockerin sequences [J].
Aurilia, V ;
Martin, JC ;
McCrae, SI ;
Scott, KP ;
Rincon, MT ;
Flint, HJ .
MICROBIOLOGY-SGM, 2000, 146 :1391-1397
[4]   Organisation and variable incidence of genes concerned with the utilization of xylans in the rumen cellulolytic bacterium Ruminococcus flavefaciens [J].
Aurilia, V ;
Martin, JC ;
Scott, KP ;
Mercer, DK ;
Johnston, MEA ;
Flint, HJ .
ANAEROBE, 2000, 6 (06) :333-340
[5]   Phenotypic diversity among ruminal isolates of Prevotella ruminicola: Proposal of Prevotella brevis sp nov, Prevotella bryantii sp nov, and Prevotella albensis sp nov and redefinition of Prevotella ruminicola [J].
Avgustin, G ;
Wallace, RJ ;
Flint, HJ .
INTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY, 1997, 47 (02) :284-288
[6]  
AYERS WA, 1959, J BIOL CHEM, V234, P2819
[7]   Cellulosomes - Structure and ultrastructure [J].
Bayer, EA ;
Shimon, LJW ;
Shoham, Y ;
Lamed, R .
JOURNAL OF STRUCTURAL BIOLOGY, 1998, 124 (2-3) :221-234
[8]   Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut [J].
Belenguer, Alvaro ;
Duncan, Sylvia H. ;
Calder, A. Graham ;
Holtrop, Grietje ;
Louis, Petra ;
Lobley, Gerald E. ;
Flint, Harry J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (05) :3593-3599
[9]   Ruminococcus albus 8 mutants defective in cellulose degradation are deficient in two processive endocellulases, Cel48A and Cel9B, both of which possess a novel modular architecture [J].
Bevillard, E ;
Goodheart, DB ;
Karnati, SKR ;
Bayer, EA ;
Lamed, R ;
Miron, J ;
Nelson, KE ;
Morrison, M .
JOURNAL OF BACTERIOLOGY, 2004, 186 (01) :136-145
[10]   Glycoside hydrolases and glycosyltransferases: families and functional modules [J].
Bourne, Y ;
Henrissat, B .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2001, 11 (05) :593-600