Engineering Cell Surface Function with DNA Origami

被引:99
作者
Akbari, Ehsan [1 ]
Mollica, Molly Y. [1 ]
Lucas, Christopher R. [1 ]
Bushman, Sarah M. [2 ]
Patton, Randy A. [1 ]
Shahhosseini, Melika [1 ]
Song, Jonathan W. [3 ]
Castro, Carlos E. [4 ]
机构
[1] Ohio State Univ, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Biomed Engn, Columbus, OH 43210 USA
[3] Ohio State Univ, Ctr Comprehens Canc, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
[4] Ohio State Univ, Biophys Grad Program, Dept Mech & Aerosp Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
cell surface engineering; DNA nanotechnology; DNA origami; intercellular adhesion; membrane functionalization; MEMBRANE; NANOSTRUCTURES; GROWTH; MECHANISMS; TRANSPORT; LEUKEMIA; CULTURE; SHAPES;
D O I
10.1002/adma.201703632
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A specific and reversible method is reported to engineer cell-membrane function by embedding DNA-origami nanodevices onto the cell surface. Robust membrane functionalization across epithelial, mesenchymal, and nonadherent immune cells is achieved with DNA nanoplatforms that enable functions including the construction of higher-order DNA assemblies at the cell surface and programed cell-cell adhesion between homotypic and heterotypic cells via sequence-specific DNA hybridization. It is anticipated that integration of DNA-origami nanodevices can transform the cell membrane into an engineered material that can mimic, manipulate, and measure biophysical and biochemical function within the plasma membrane of living cells.
引用
收藏
页数:9
相关论文
共 52 条
[31]   Programmable motion of DNA origami mechanisms [J].
Marras, Alexander E. ;
Zhou, Lifeng ;
Su, Hai-Jun ;
Castro, Carlos E. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (03) :713-718
[32]  
Modi S, 2013, NAT NANOTECHNOL, V8, P459, DOI [10.1038/NNANO.2013.92, 10.1038/nnano.2013.92]
[33]   Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors [J].
Morsut, Leonardo ;
Roybal, Kole T. ;
Xiong, Xin ;
Gordley, Russell M. ;
Coyle, Scott M. ;
Thomson, Matthew ;
Lim, Wendell A. .
CELL, 2016, 164 (04) :780-791
[34]   Optical trapping [J].
Neuman, KC ;
Block, SM .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (09) :2787-2809
[35]   Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp [J].
Nickels, Philipp C. ;
Wuensch, Bettina ;
Holzmeister, Phil ;
Bae, Wooli ;
Kneer, Luisa M. ;
Grohmann, Dina ;
Tinnefeld, Philip ;
Liedl, Tim .
SCIENCE, 2016, 354 (6310) :305-307
[36]   Sensitization of Transforming Growth Factor-β Signaling by Multiple Peptides Patterned on DNA Nanostructures [J].
Pedersen, Ronnie O. ;
Loboa, Elizabeth G. ;
LaBean, Thomas H. .
BIOMACROMOLECULES, 2013, 14 (12) :4157-4160
[37]   Folding DNA to create nanoscale shapes and patterns [J].
Rothemund, PWK .
NATURE, 2006, 440 (7082) :297-302
[38]   Orthogonal Protein Decoration of DNA Origami [J].
Sacca, Barbara ;
Meyer, Rebecca ;
Erkelenz, Michael ;
Kiko, Kathrin ;
Arndt, Andreas ;
Schroeder, Hendrik ;
Rabe, Kersten S. ;
Niemeyer, Christof M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (49) :9378-9383
[39]   NUCLEIC-ACID JUNCTIONS AND LATTICES [J].
SEEMAN, NC .
JOURNAL OF THEORETICAL BIOLOGY, 1982, 99 (02) :237-247
[40]  
Shaw A, 2014, NAT METHODS, V11, P841, DOI [10.1038/NMETH.3025, 10.1038/nmeth.3025]