Measurement of the contributions of 1D and 3D pathways to the translocation of a protein along DNA

被引:196
作者
Gowers, DM [1 ]
Wilson, GG [1 ]
Halford, SE [1 ]
机构
[1] Univ Bristol, Sch Med Sci, Dept Biochem, Bristol BS8 1TD, Avon, England
基金
英国惠康基金;
关键词
DNA-protein interaction; recognition sequence; restriction enzyme;
D O I
10.1073/pnas.0505378102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Proteins that act at specific DNA sequences bind DNA randomly and then translocate to the target site. The translocation is often ascribed to the protein sliding along the DNA while maintaining continuous contact with it. Proteins also can move on DNA by multiple cycles of dissociation/reassociation within the same chain. To distinguish these pathways, a strategy was developed to analyze protein motion between DNA sites. The strategy reveals whether the protein maintains contact with the DNA as it transfers from one site to another by sliding or whether it loses contact by a dissociation/reassociation step. In reactions at low salt, the test protein stayed on the DNA as it traveled between sites, but only when the sites were < 50 by apart. Transfers of > 30 by at in vivo salt, and over distances of > 50 by at any salt, always included at least one dissociation step. Hence, for this enzyme, 1D sliding operates only over short distances at low salt, and 3D dissociation/reassociation is its main mode of translocation.
引用
收藏
页码:15883 / 15888
页数:6
相关论文
共 39 条
[1]   DNA cleavage by the EcoRV restriction endonuclease:: Roles of divalent metal ions in specificity and catalysis [J].
Baldwin, GS ;
Sessions, RB ;
Erskine, SG ;
Halford, SE .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 288 (01) :87-103
[2]   Many type IIs restriction endonucleases interact with two recognition sites before cleaving DNA [J].
Bath, AJ ;
Milsom, SE ;
Gormley, NA ;
Halford, SE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (06) :4024-4033
[3]   Cleavage of individual DNA strands by the different subunits of the heterodimeric restriction endonuclease BbvCI [J].
Bellamy, SRW ;
Milsom, SE ;
Scott, DJ ;
Daniels, LE ;
Wilson, GG ;
Halford, SE .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 348 (03) :641-653
[4]  
Bellomy G R, 1990, Prog Nucleic Acid Res Mol Biol, V39, P81, DOI 10.1016/S0079-6603(08)60624-8
[5]  
Berg H. C., 1993, RANDOM WALKS BIOL
[6]   ON DIFFUSION-CONTROLLED DISSOCIATION [J].
BERG, OG .
CHEMICAL PHYSICS, 1978, 31 (01) :47-57
[7]   DIFFUSION-DRIVEN MECHANISMS OF PROTEIN TRANSLOCATION ON NUCLEIC-ACIDS .1. MODELS AND THEORY [J].
BERG, OG ;
WINTER, RB ;
VONHIPPEL, PH .
BIOCHEMISTRY, 1981, 20 (24) :6929-6948
[8]  
BERG OG, 1985, ANNU REV BIOPHYS BIO, V14, P131, DOI 10.1146/annurev.bb.14.060185.001023
[9]   The regulation of bacterial transcription initiation [J].
Browning, DF ;
Busby, SJW .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (01) :57-65
[10]   Kinetics of target site localization of a protein on DNA:: A stochastic approach [J].
Coppey, M ;
Bénichou, O ;
Voituriez, R ;
Moreau, M .
BIOPHYSICAL JOURNAL, 2004, 87 (03) :1640-1649