Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies

被引:3771
作者
Eisenstein, DJ
Zehavi, I
Hogg, DW
Scoccimarro, R
Blanton, MR
Nichol, RC
Scranton, R
Seo, HJ
Tegmark, M
Zheng, Z
Anderson, SF
Annis, J
Bahcall, N
Brinkmann, J
Burles, S
Castander, FJ
Connolly, A
Csabai, I
Doi, M
Fukugita, M
Frieman, JA
Glazebrook, K
Gunn, JE
Hendry, JS
Hennessy, G
Ivezic, Z
Kent, S
Knapp, GR
Lin, H
Loh, YS
Lupton, RH
Margon, B
McKay, TA
Meiksin, A
Munn, JA
Pope, A
Richmond, MW
Schlegel, D
Schneider, DP
Shimasaku, K
Stoughton, C
Strauss, MA
SubbaRao, M
Szalay, AS
Szapudi, I
Tucker, DL
Yanny, B
York, DG
机构
[1] Univ Arizona, Steward Observ, Tucson, AZ 85121 USA
[2] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA
[3] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth P01 2EG, Hants, England
[4] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA
[5] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA
[6] MIT, Dept Phys, Cambridge, MA 02139 USA
[7] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
[8] Univ Washington, Dept Astron, Seattle, WA 98195 USA
[9] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA
[10] Princeton Univ Observ, Princeton, NJ 08544 USA
[11] Apache Point Observ, Sunspot, NM 88349 USA
[12] CSIC, Inst Estudis Espacials Catalunya, E-08034 Barcelona, Spain
[13] Eotvos Lorand Univ, Dept Phys Complex Syst, H-1518 Budapest, Hungary
[14] Univ Tokyo, Sch Sci, Inst Astron, Tokyo 1810015, Japan
[15] Univ Tokyo, Inst Cosm Ray Res, Kashiwa, Chiba 2778582, Japan
[16] Univ Chicago, Ctr Astron & Astrophys, Chicago, IL 60637 USA
[17] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[18] USN Observ, Flagstaff Stn, Flagstaff, AZ 86002 USA
[19] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80803 USA
[20] Space Telescope Sci Inst, Baltimore, MD 21218 USA
[21] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[22] Univ Edinburgh, Royal Observ, Inst Astron, Edinburgh EH9 3HJ, Midlothian, Scotland
[23] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA
[24] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[25] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
[26] Univ Tokyo, Sch Sci, Dept Astron, Bunkyo Ku, Tokyo 1130033, Japan
[27] Adler Planetarium, Chicago, IL 60605 USA
[28] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA
关键词
cosmic microwave background; cosmological parameters; cosmology : observations; distance scale; galaxies : elliptical and lenticular; cD; large-scale structure of universe;
D O I
10.1086/466512
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present the large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey. The survey region covers 0.72 h(-3) Gpc(3) over 3816 deg(2) and 0.16 < z < 0.47, making it the best sample yet for the study of large-scale structure. We find a well-detected peak in the correlation function at 100 h(-1) Mpc separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between z approximate to 1000 and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to z = 0.35 and z = 1089 to 4% fractional accuracy and the absolute distance to z 0: 35 to 5% accuracy. From the overall shape of the correlation function, we measure the matter density Omega(m)h(2) to 8% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find Omega(m) = 0.273 +/- 0.025 + 0.123(1 + w(0)) + 0.137 Omega(K). Including the CMB acoustic scale, we find that the spatial curvature is Omega(K) = -0.010 +/- 0.009 if the dark energy is a cosmological constant. More generally, our results provide a measurement of cosmological distance, and hence an argument for dark energy, based on a geometric method with the same simple physics as the microwave background anisotropies. The standard cosmological model convincingly passes these new and robust tests of its fundamental properties.
引用
收藏
页码:560 / 574
页数:15
相关论文
共 148 条