Recent Advances in Ligand-Based Drug Design: Relevance and Utility of the Conformationally Sampled Pharmacophore Approach

被引:172
作者
Acharya, Chayan [1 ]
Coop, Andrew [1 ]
Polli, James E. [1 ]
MacKerell, Alexander D., Jr. [1 ]
机构
[1] Univ Maryland, Sch Pharm, Dept Pharmaceut Sci, Baltimore, MD 21201 USA
基金
美国国家卫生研究院;
关键词
CoMFA; computer-aided drug design; CoMSIA; CSP; drug discovery; lead optimization; pharmacophore; MOLECULAR-FORCE FIELD; ARTIFICIAL NEURAL-NETWORKS; ANTI-HIV ACTIVITY; NONLINEAR QSAR; ANALYSIS COMSIA; DYNAMICS METHOD; SEARCH; DISCOVERY; BINDING; MODEL;
D O I
10.2174/157340911793743547
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
In the absence of three-dimensional (3D) structures of potential drug targets, ligand-based drug design is one of the popular approaches for drug discovery and lead optimization. 3D structure-activity relationships (3D QSAR) and pharmacophore modeling are the most important and widely used tools in ligand-based drug design that can provide crucial insights into the nature of the interactions between drug target and ligand molecule and provide predictive models suitable for lead compound optimization. This review article will briefly discuss the features and potential application of recent advances in ligand-based drug design, with emphasis on a detailed description of a novel 3D QSAR method based on the conformationally sample pharmacophore (CSP) approach (denoted CSP-SAR). In addition, data from a published study are used to compare the CSP-SAR approach to the Catalyst method, emphasizing the utility of the CSP approach for ligand-based model development.
引用
收藏
页码:10 / 22
页数:13
相关论文
共 160 条
[21]   A ligand-based approach to identify quantitative structure-activity relationships for the androgen receptor [J].
Bohl, CE ;
Chang, C ;
Mohler, ML ;
Chen, JY ;
Miller, DD ;
Swaan, PW ;
Dalton, JT .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (15) :3765-3776
[22]   Conformational energy penalties of protein-bound ligands [J].
Bostrom, J ;
Norrby, PO ;
Liljefors, T .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 1998, 12 (04) :383-396
[23]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[24]  
Bultinck P., 2004, COMPUTATIONAL MED CH
[25]  
Buntine W. L., 1991, Complex Systems, V5, P603
[26]   Robust QSAR models using Bayesian regularized neural networks [J].
Burden, FR ;
Winkler, DA .
JOURNAL OF MEDICINAL CHEMISTRY, 1999, 42 (16) :3183-3187
[27]   Use of automatic relevance determination in QSAR studies using Bayesian neural networks [J].
Burden, FR ;
Ford, MG ;
Whitley, DC ;
Winkler, DA .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (06) :1423-1430
[28]   An Optimal Self-Pruning Neural Network and Nonlinear Descriptor Selection in QSAR [J].
Burden, Frank R. ;
Winkler, David A. .
QSAR & COMBINATORIAL SCIENCE, 2009, 28 (10) :1092-1097
[29]   Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks [J].
Caballero, J ;
Fernández, M .
JOURNAL OF MOLECULAR MODELING, 2006, 12 (02) :168-181
[30]  
Case D.A., 2006, AMBER 9