Transport phenomena in polymer electrolyte membranes - I. Modeling framework

被引:68
作者
Fimrite, J [1 ]
Struchtrup, H [1 ]
Djilali, N [1 ]
机构
[1] Univ Victoria, Inst Integrated Energy Syst, Victoria, BC V8W 3P6, Canada
关键词
D O I
10.1149/1.1952627
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper presents a critical examination and analysis of classical and recently proposed models for transport phenomena in polymer electrolyte membranes. Key experimental observations related to membrane conductivity, membrane hydration, and sorption isotherms are first reviewed. Proton transport mechanisms in bulk water, and the influence of the membrane phase on these mechanisms, are examined. Finally, various formulations and underlying assumptions to account for macroscopic transport are reviewed, and an analysis of the binary friction model (BFM) and dusty fluid model (DFM) is performed to resolve an outstanding formulation issue. It is shown that the BFM provides a physically consistent modeling framework and implicitly accounts for viscous transport (i.e., Schloegl equation), whereas the dusty fluid model erroneously accounts twice for viscous transport. In Part II we apply the BFM framework to develop a general transport model for perfluorosulfonic acid membranes. (c) 2005 The Electrochemical Society.
引用
收藏
页码:A1804 / A1814
页数:11
相关论文
共 59 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonated α,β,β-trifluorostyrene (BAM®) and sulfonated styrene-(ethylene-butylene)-styrene triblock (DAIS-analytical) copolymers [J].
Basura, VI ;
Chuy, C ;
Beattie, PD ;
Holdcroft, S .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 501 (1-2) :77-88
[3]   Ionic conductivity of proton exchange membranes [J].
Beattie, PD ;
Orfino, FP ;
Basura, VI ;
Zychowska, K ;
Ding, JF ;
Chuy, C ;
Schmeisser, J ;
Holdcroft, S .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 503 (1-2) :45-56
[4]   Water management in PEM fuel cells [J].
Berg, P ;
Promislow, K ;
St Pierre, J ;
Stumper, J ;
Wetton, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (03) :A341-A353
[5]   A MATHEMATICAL-MODEL OF THE SOLID-POLYMER-ELECTROLYTE FUEL-CELL [J].
BERNARDI, DM ;
VERBRUGGE, MW .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (09) :2477-2491
[6]   MATHEMATICAL-MODEL OF A GAS-DIFFUSION ELECTRODE BONDED TO A POLYMER ELECTROLYTE [J].
BERNARDI, DM ;
VERBRUGGE, MW .
AICHE JOURNAL, 1991, 37 (08) :1151-1163
[7]   WATER-BALANCE CALCULATIONS FOR SOLID-POLYMER-ELECTROLYTE FUEL-CELLS [J].
BERNARDI, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (11) :3344-3350
[8]   A 3D, multiphase, multicomponent model of the cathode and anode of a PEM fuel cell [J].
Berning, T ;
Djilali, N .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :A1589-A1598
[9]   HYDRODYNAMIC MODEL FOR ELECTROOSMOSIS [J].
BRESLAU, BR ;
MILLER, IF .
INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1971, 10 (04) :554-&
[10]   Sorption in proton-exchange membranes - An explanation of Schroeder's paradox [J].
Choi, PH ;
Datta, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (12) :E601-E607