Caveolin-1 Deficiency Dampens Toll-Like Receptor 4 Signaling through eNOS Activation

被引:80
作者
Mirza, Muhammad K. [1 ,2 ]
Yuan, Jun [1 ,2 ]
Gao, Xiao-Pei [1 ,2 ]
Garrean, Sean [1 ,2 ]
Brovkovych, Viktor [1 ,2 ]
Malik, Asrar B. [1 ,2 ]
Tiruppathi, Chinnaswamy [1 ,2 ]
Zhao, You-Yang [1 ,2 ]
机构
[1] Univ Illinois, Dept Pharmacol, Coll Med, Chicago, IL 60612 USA
[2] Univ Illinois, Ctr Lung & Vasc Biol, Coll Med, Chicago, IL 60612 USA
关键词
NITRIC-OXIDE SYNTHASE; NF-KAPPA-B; LUNG NEUTROPHIL SEQUESTRATION; INNATE IMMUNITY; PULMONARY-HYPERTENSION; GENE-TRANSCRIPTION; KINASE-ACTIVITY; TNF-ALPHA; IN-VIVO; MICE;
D O I
10.2353/ajpath.2010.091088
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Caveolin-1 (Cav1), the scaffolding protein of caveolae, has been shown to play an important role in host defense and inflammation. However, the underlying molecular basis for these actions remains elusive. Here, using double mutant mice with genetic deletions of Cav1 and NOS3, we show that chronic endothelial nitric oxide synthase (eNOS) activation secondary to loss of Cav1 serves a crucial immunomodulatory function through tyrosine nitration-mediated impairment of interleukin-1 receptor associated kinase (IRAK)4, a signaling component required for nuclear factor-kappa B activation and innate immunity. We observed an eNOS-dependent decrease in the plasma concentration of pro-inflammatory cytokines and marked improvement of survival in Cav1(-/-) mice following lipopolysaccharide challenge. Activation of eNOS secondary to loss of Cav1 resulted in decreased activation of nuclear factor-kappa B in response to lipopolysaccharide challenge, and thereby protected the animals from lipopolysaccharide-induced lung injury. IRAK4 was prominently nitrated in Cav1-deficient endothelial cells, whereas eNOS deletion in Cav1-deficient endothelial cells resulted in marked decrease of IRAK4 nitration and restored the inflammatory response after lipopolysaccharide challenge. Furthermore, in vitro nitration of IRAK4 resulted in impairment of the kinase activity. Thus, eNOS activation secondary to loss of Cav1 signals dampening of the innate immune response to lipopolysaccharide through IRAK4 nitration and the resultant impairment of kinase activity, and consequently mitigates inflammatory lung injury. (Am J Pathol 2010, 176:2344-2351; DOI: 10.2353/ajpath.2010.091088)
引用
收藏
页码:2344 / 2351
页数:8
相关论文
共 45 条
[1]   Toll-like receptors: critical proteins linking innate and acquired immunity [J].
Akira, S ;
Takeda, K ;
Kaisho, T .
NATURE IMMUNOLOGY, 2001, 2 (08) :675-680
[2]   Protective role of endothelial nitric oxide synthase [J].
Albrecht, EWJA ;
Stegeman, CA ;
Heeringa, P ;
Henning, RH ;
van Goor, H .
JOURNAL OF PATHOLOGY, 2003, 199 (01) :8-17
[3]   Innate immune sensing and its roots: the story of endotoxin [J].
Beutler, B ;
Rietschel, ET .
NATURE REVIEWS IMMUNOLOGY, 2003, 3 (02) :169-176
[4]   The role of nitric oxide in innate immunity [J].
Bogdan, CT ;
Röllinghoff, M ;
Diefenbach, A .
IMMUNOLOGICAL REVIEWS, 2000, 173 :17-26
[5]   In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation [J].
Bucci, M ;
Gratton, JP ;
Rudic, RD ;
Acevedo, L ;
Roviezzo, F ;
Cirino, G ;
Sessa, WC .
NATURE MEDICINE, 2000, 6 (12) :1362-1367
[6]   TARF6 is a signal transducer for interleukin-1 [J].
Cao, ZD ;
Xiong, J ;
Takeuchi, M ;
Kurama, T ;
Goeddel, DV .
NATURE, 1996, 383 (6599) :443-446
[7]   IRAK: A kinase associated with the interleukin-1 receptor [J].
Cao, ZD ;
Henzel, WJ ;
Gao, XO .
SCIENCE, 1996, 271 (5252) :1128-1131
[8]   Role of oxidants in NF-κB activation and TNF-α gene transcription induced by hypoxia and endotoxin [J].
Chandel, NS ;
Trzyna, WC ;
McClintock, DS ;
Schumacker, PT .
JOURNAL OF IMMUNOLOGY, 2000, 165 (02) :1013-1021
[9]   Endothelial nitric oxide synthase: the Cinderella of inflammation? [J].
Cirino, G ;
Fiorucci, S ;
Sessa, WC .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2003, 24 (02) :91-95
[10]   Resistance to endotoxic shock in endothelial nitric-oxide synthase (eNOS) knock-out mice -: A pro-inflammatory role for eNOS-derived no in vivo [J].
Connelly, L ;
Madhani, M ;
Hobbs, AJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (11) :10040-10046