Mechanism of asymmetric hydrogenation of ketones catalyzed by BINAP/1,2-diamine-ruthenium(II) complexes

被引:555
作者
Sandoval, CA
Ohkuma, T
Muñiz, K
Noyori, R [1 ]
机构
[1] Nagoya Univ, Dept Chem, Nagoya, Aichi 4648602, Japan
[2] Nagoya Univ, Res Ctr Mat Sci, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.1021/ja030272c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Asymmetric hydrogenation of acetophenone with trans-RuH(eta(1)-BH4) [(S)-tolbinap] [(S, S)-dpen] (TolBINAP = 2,2'-bis(di-4-tolylphosphino)-1,1'-binaphthyl; DPEN = 1,2-diphenylethylenediamine) in 2-propanol gives (R)-phenylethanol in 82% ee. The reaction proceeds smoothly even at an atmospheric pressure of H-2 at room temperature and is further accelerated by addition of an alkaline base or a strong organic base. Most importantly, the hydrogenation rate is initially increased to a great extent with an increase in base molarity but subsequently decreases. Without a base, the rate is independent of H-2 pressure in the range of 1-16 atm, while in the presence of a base, the reaction is accelerated with increasing H-2 pressure. The extent of enantioselection is unaffected by hydrogen pressure, the presence or absence of base, the kind of base and coexisting metallic or organic cations, the nature of the solvent, or the substrate concentrations. The reaction with H-2/(CH3)(2)CHOH proceeds 50 times faster than that with D-2/(CD3)(2)CDOD in the absence of base, but the rate differs only by a factor of 2 in the presence of KO-t-C4H9. These findings indicate that dual mechanisms are in operation, both of which are dependent on reaction conditions and involve heterolytic cleavage of H-2 to form a common reactive intermediate. The key [RuH(diphosphine)(diamine)] and its solvate complex have been detected by ESI-TOFMS and NMR spectroscopy. The hydrogenation of ketones is proposed to occur via a nonclassical metal-ligand bifunctional mechanism involving a chiral RuH2(diphosphine)(diamine), where a hydride on Ru and a proton of the NH2 ligand are simultaneously transferred to the C=O function via a six-membered pericyclic transition state. The NH2 unit in the diamine ligand plays a pivotal role in the catalysis. The reaction occurs in the outer coordination sphere of the 18e RuH2 complex without C=O/metal interaction. The enantiofaces of prochiral aromatic ketones are kinetically differentiated on the molecular surface of the coordinatively saturated chiral RuH2 intermediate rather than in a coordinatively unsaturated Ru template.
引用
收藏
页码:13490 / 13503
页数:14
相关论文
共 111 条
  • [81] Ohkuma T., 1999, COMPREHENSIVE ASYMME, V1
  • [82] Ohkuma T., 2000, CATALYTIC ASYMMETRIC
  • [83] Pàmies O, 2001, CHEM-EUR J, V7, P5052, DOI 10.1002/1521-3765(20011203)7:23<5052::AID-CHEM5052>3.0.CO
  • [84] 2-Z
  • [85] Parshall G.W., 1980, Homogeneous Catalysis: The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes
  • [86] Parshall G.W. Ittel., 1992, HOMOGENEOUS CATALYSI, V2nd edn
  • [87] Petra DGI, 2000, CHEM-EUR J, V6, P2818, DOI 10.1002/1521-3765(20000804)6:15<2818::AID-CHEM2818>3.0.CO
  • [88] 2-Q
  • [89] Directionality of hydrogen bonds to sulfur and oxygen
    Platts, JA
    Howard, ST
    Bracke, BRF
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (11) : 2726 - 2733
  • [90] Binding of acetylcholine and quaternary ammonium cations to macrocyclic and acyclic "phane" esters.: Evaluation of the cation-π primary interaction through adaptive aromatic hosts
    Roelens, S
    Torriti, R
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (48) : 12443 - 12452