Cloaking via change of variables in electric impedance tomography

被引:169
作者
Kohn, R. V. [1 ]
Shen, H. [1 ]
Vogelius, M. S. [2 ]
Weinstein, M. I. [3 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08855 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
关键词
D O I
10.1088/0266-5611/24/1/015016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A recent paper by Pendry et al ( 2006 Science 312 1780 - 2) used the coordinate invariance of Maxwell's equations to show how a region of space can be 'cloaked' - in other words, made inaccessible to electromagnetic sensing by surrounding it with a suitable ( anisotropic and heterogenous) dielectric shield. Essentially the same observation was made several years earlier by Greenleaf et al ( 2003 Math. Res. Lett. 10 685 - 93, 2003 Physiol. Meas. 24 413 - 9) in the closely related setting of electric impedance tomography. These papers, though brilliant, have two shortcomings: ( a) the cloaks they consider are rather singular; and ( b) the analysis by Greenleaf, Lassas and Uhlmann does not apply in space dimension n = 2. The present paper provides a fresh treatment that remedies these shortcomings in the context of electric impedance tomography. In particular, we show how a regular near- cloak can be obtained using a nonsingular change of variables, and we prove that the change-of-variable-based scheme achieves perfect cloaking in any dimension n >= 2.
引用
收藏
页数:21
相关论文
共 44 条
[1]  
Adams R., 1975, Sobolev Spaces
[2]   Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations [J].
Ammari, H ;
Vogelius, MS ;
Volkov, D .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (08) :769-814
[3]  
AMMARI H, 2004, LECT NOTES MATH, V1846
[4]   Calderon's inverse problem for anisotropic conductivity in the plane [J].
Astala, K ;
Päivärinta, L ;
Lassas, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) :207-224
[5]   Electrical impedance tomography [J].
Borcea, L .
INVERSE PROBLEMS, 2002, 18 (06) :R99-R136
[6]   Optical cloaking with metamaterials [J].
Cai, Wenshan ;
Chettiar, Uday K. ;
Kildishev, Alexander V. ;
Shalaev, Vladimir M. .
NATURE PHOTONICS, 2007, 1 (04) :224-227
[7]  
Calderon A.P., 1980, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, 1980, P65, DOI DOI 10.1590/S0101-82052006000200002
[8]   Electromagnetic wave interactions with a metamaterial cloak [J].
Chen, Hongsheng ;
Wu, Bae-Ian ;
Zhang, Baile ;
Kong, Jin Au .
PHYSICAL REVIEW LETTERS, 2007, 99 (06)
[9]   Transformation media that rotate electromagnetic fields [J].
Chen, Huanyang ;
Chan, C. T. .
APPLIED PHYSICS LETTERS, 2007, 90 (24)
[10]   Electrical impedance tomography [J].
Cheney, M ;
Isaacson, D ;
Newell, JC .
SIAM REVIEW, 1999, 41 (01) :85-101