Dynamic causal modelling: A critical review of the biophysical and statistical foundations

被引:212
作者
Daunizeau, J. [1 ,2 ]
David, O. [3 ,4 ,5 ,6 ]
Stephan, K. E. [2 ]
机构
[1] UCL, Inst Neurol, Wellcome Trust Ctr Neuroimaging, London WC1N 3BG, England
[2] Univ Zurich, Inst Empir Res Econ, Lab Social & Neural Syst Res, CH-8006 Zurich, Switzerland
[3] Grenoble Inst Neurosci, INSERM, U836, Grenoble, France
[4] Univ Grenoble 1, Grenoble, France
[5] Univ Hosp, Dept Neuroradiol, Grenoble, France
[6] Univ Hosp, MRI Unit, Grenoble, France
关键词
NEURAL MASS MODEL; EVOKED-RESPONSES; POPULATION-DYNAMICS; BAYESIAN-ESTIMATION; SPECTRAL RESPONSES; FUNCTIONAL MRI; FMRI; PLASTICITY; ACTIVATION; EEG;
D O I
10.1016/j.neuroimage.2009.11.062
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The goal of dynamic causal modelling (DCM) of neuroimaging data is to study experimentally induced changes in functional integration among brain regions. This requires (i) biophysically plausible and physiologically interpretable models of neuronal network dynamics that can predict distributed brain responses to experimental stimuli and (ii) efficient statistical methods for parameter estimation and model comparison. These two key components of DCM have been the focus of more than thirty methodological articles since the seminal work of Friston and colleagues published in 2003. In this paper, we provide a critical review of the current state-of-the-art of DCM. We inspect the properties of DCM in relation to the most common neuroimaging modalities (fMRI and EEG/MEG) and the specificity of inference on neural systems that can be made from these data. We then discuss both the plausibility of the underlying biophysical models and the robustness of the statistical inversion techniques. Finally, we discuss potential extensions of the current DCM framework, such as stochastic DCMs, plastic DCMs and field DCMs. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:312 / 322
页数:11
相关论文
共 90 条
[1]   Integration of light-controlled neuronal firing and fast circuit imaging [J].
Airan, Raag D. ;
Hu, Elbert S. ;
Vijaykumar, Ragu ;
Roy, Madhuri ;
Meltzer, Leslie A. ;
Deisseroth, Karl .
CURRENT OPINION IN NEUROBIOLOGY, 2007, 17 (05) :587-592
[2]   DYNAMICS OF PATTERN FORMATION IN LATERAL-INHIBITION TYPE NEURAL FIELDS [J].
AMARI, SI .
BIOLOGICAL CYBERNETICS, 1977, 27 (02) :77-87
[3]  
Beal M. J., 2003, VARIATIONAL ALGORITH
[4]   A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis [J].
Breakspear, M. ;
Roberts, J. A. ;
Terry, J. R. ;
Rodrigues, S. ;
Mahant, N. ;
Robinson, P. A. .
CEREBRAL CORTEX, 2006, 16 (09) :1296-1313
[5]   Wiener-Granger Causality: A well established methodology [J].
Bressler, Steven L. ;
Seth, Anil K. .
NEUROIMAGE, 2011, 58 (02) :323-329
[6]   Modulation of connectivity in visual pathways by attention: Cortical interactions evaluated with structural equation modelling and fMRI [J].
Buchel, C ;
Friston, KJ .
CEREBRAL CORTEX, 1997, 7 (08) :768-778
[7]   Dynamics of blood flow and oxygenation changes during brain activation: The balloon model [J].
Buxton, RB ;
Wong, EC ;
Frank, LR .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) :855-864
[8]   Dynamic causal modelling of induced responses [J].
Chen, C. C. ;
Kiebel, S. J. ;
Friston, K. J. .
NEUROIMAGE, 2008, 41 (04) :1293-1312
[9]   A Metropolis-Hastings algorithm for dynamic causal models [J].
Chumbley, Justin R. ;
Friston, Karl J. ;
Fearn, Tom ;
Kiebel, Stefan J. .
NEUROIMAGE, 2007, 38 (03) :478-487
[10]   Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models [J].
Daunizeau, J. ;
Friston, K. J. ;
Kiebel, S. J. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (21) :2089-2118