Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges

被引:773
作者
Bose, Saswata [1 ]
Kuila, Tapas [1 ]
Thi Xuan Lien Nguyen [2 ]
Kim, Nam Hoon [3 ]
Lau, Kin-tak [1 ,4 ,5 ]
Lee, Joong Hee [1 ,2 ]
机构
[1] Chonbuk Natl Univ, Dept BIN Fus Technol, Jeonju 561756, Jeonbuk, South Korea
[2] Chonbuk Natl Univ, BIN Fus Res Team, Dept Polymer & Nano Engn, Jeonju 561756, Jeonbuk, South Korea
[3] Chonbuk Natl Univ, Dept Hydrogen & Fuel Cell Engn, Jeonju 561756, Jeonbuk, South Korea
[4] Univ So Queensland, Ctr Excellence Engn Fibre Composites, Fac Engn & Surveying, Toowoomba, Qld 4350, Australia
[5] Hong Kong Polytech Univ, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
关键词
High temperature proton exchange membrane; Fuel cell; Polymeric membrane; Proton conductivity; Cell performance; Water retention; POLY(ARYLENE ETHER SULFONE); ACID DOPED POLYBENZIMIDAZOLE; COPOLYMER COMPOSITE MEMBRANES; AROMATIC POLY(ETHER KETONE)S; SOL-GEL REACTION; CONDUCTING MEMBRANES; ELECTROLYTE MEMBRANES; BLEND MEMBRANES; CARBON-MONOXIDE; SIDE-GROUPS;
D O I
10.1016/j.progpolymsci.2011.01.003
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Proton-exchange membrane fuel cells (PEMFCs) are considered to be a promising technology for efficient power generation in the 21st century. Currently, high temperature proton exchange membrane fuel cells (HT-PEMFC) offer several advantages, such as high proton conductivity, low permeability to fuel, low electro-osmotic drag coefficient, good chemical/thermal stability, good mechanical properties and low cost. Owing to the aforementioned features, high temperature proton exchange membrane fuel cells have been utilized more widely compared to low temperature proton exchange membrane fuel cells, which contain certain limitations, such as carbon monoxide poisoning, heat management, water leaching, etc. This review examines the inspiration for HT-PEMFC development, the technological constraints, and recent advances. Various classes of polymers, such as sulfonated hydrocarbon polymers, acid-base polymers and blend polymers, have been analyzed to fulfill the key requirements of high temperature operation of proton exchange membrane fuel cells (PEMFC). The effect of inorganic additives on the performance of HT-PEMFC has been scrutinized. A detailed discussion of the synthesis of polymer, membrane fabrication and physicochemical characterizations is provided. The proton conductivity and cell performance of the polymeric membranes can be improved by high temperature treatment. The mechanical and water retention properties have shown significant improvement., However, there is scope for further research from the perspective of achieving improvements in certain areas, such as optimizing the thermal and chemical stability of the polymer, acid management, and the integral interface between the electrode and membrane. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:813 / 843
页数:31
相关论文
共 184 条
[1]   Function and characterization of metal oxide-naflon composite membranes for elevated-temperature H2/O2 PEM fuel cells [J].
Adjemian, KT ;
Dominey, R ;
Krishnan, L ;
Ota, H ;
Majsztrik, P ;
Zhang, T ;
Mann, J ;
Kirby, B ;
Gatto, L ;
Velo-Simpson, M ;
Leahy, J ;
Srinivasant, S ;
Benziger, JB ;
Bocarsly, AB .
CHEMISTRY OF MATERIALS, 2006, 18 (09) :2238-2248
[2]   Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes [J].
Adjemian, KT ;
Srinivasan, S ;
Benziger, J ;
Bocarsly, AB .
JOURNAL OF POWER SOURCES, 2002, 109 (02) :356-364
[3]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[4]   Protonic conductivity of layered zirconium phosphonates containing -SO3H groups .3. Preparation and characterization of gamma-zirconium sulfoaryl phosphonates [J].
Alberti, G ;
Boccali, L ;
Casciola, M ;
Massinelli, L ;
Montoneri, E .
SOLID STATE IONICS, 1996, 84 (1-2) :97-104
[5]   Inorgano-organic proton conducting membranes for fuel cells and sensors at medium temperatures [J].
Alberti, G ;
Casciola, M ;
Palombari, R .
JOURNAL OF MEMBRANE SCIENCE, 2000, 172 (1-2) :233-239
[6]   Layered metal(IV) phosphonates, a large class of inorgano-organic proton conductors [J].
Alberti, G ;
Casciola, M .
SOLID STATE IONICS, 1997, 97 (1-4) :177-186
[7]   Solid state protonic conductors, present main applications and future prospects [J].
Alberti, G ;
Casciola, M .
SOLID STATE IONICS, 2001, 145 (1-4) :3-16
[8]   Polymeric proton conducting membranes for medium temperature fuel cells (110-160°C) [J].
Alberti, G ;
Casciola, M ;
Massinelli, L ;
Bauer, B .
JOURNAL OF MEMBRANE SCIENCE, 2001, 185 (01) :73-81
[9]   Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells [J].
Amjadi, M. ;
Rowshanzamir, S. ;
Peighambardoust, S. J. ;
Hosseini, M. G. ;
Eikani, M. H. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (17) :9252-9260
[10]   Durability of sulfonated polyimide membrane evaluated by long-term polymer electrolyte fuel cell operation [J].
Aoki, M ;
Asano, N ;
Miyatake, K ;
Uchida, H ;
Watanabe, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (06) :A1154-A1158