Modeling basin-scale internal waves in a stratified lake

被引:320
作者
Hodges, BR [1 ]
Imberger, J
Saggio, A
Winters, KB
机构
[1] Univ Western Australia, Ctr Water Res, Nedlands, WA 6907, Australia
[2] Univ Washington, Appl Phys Lab, Seattle, WA 98195 USA
[3] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
D O I
10.4319/lo.2000.45.7.1603
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Basin-scale internal waves provide the driving forces for vertical and horizontal fluxes in a stratified lake below the wind-mixed layer. Thus, correct modeling of lake mixing and transport requires accurate modeling of basin-scale internal waves: examining this capability with a hydrostatic, z-coordinate three-dimensional (3D) numerical model at coarse grid resolutions is the focus of this paper. It is demonstrated that capturing the correct thermocline forcing with a 3D mixed-layer model for surface dynamics results in a good representation of low-frequency internal wave dynamics. The 3D estuary and lake computer model ELCOM is applied to modeling Lake Kinneret, Israel, and is compared with field data under summer stratification conditions to identify and illustrate the spatial structure of the lowest-mode basin-scale Kelvin and Poincare waves that provide the largest two peaks in the internal wave energy spectra. The model solves the unsteady Reynolds-averaged Navier-Stokes equations using a semi-implicit method similar to the momentum solution in the TRIM code with the addition of quadratic Euler-Lagrange discretization, scalar (e.g., temperature) transport using a conservative flux-limited approach, and elimination of vertical diffusion terms in the governing equations. A detailed description is provided of turbulence closure for the vertical Reynolds stress terms and vertical turbulent transport using a 3D mixed-layer model parameterized on wind and shear energy fluxes instead of the convential eddy viscosity/diffusivity assumption. This approach gives a good representation of the depth of the mixed-layer at coarse vertical grid resolutions that allows the internal waves to be energized correctly at the basin scale.
引用
收藏
页码:1603 / 1620
页数:18
相关论文
共 72 条
[41]  
Imberger J., 1994, LIMNOLOGY NOW PARADI, P79
[42]  
IMBERGER J, 1990, ADV APPL MECH, V27, P303
[43]  
Imberger J., 1981, TRANSPORT MODELS INL, P310, DOI [10.1016/B978-0-12-258152-6.50014-2, DOI 10.1016/B978-0-12-258152-6.50014-2]
[44]  
IVEY GN, 1991, J PHYS OCEANOGR, V21, P650, DOI 10.1175/1520-0485(1991)021<0650:OTNOTI>2.0.CO
[45]  
2
[46]   VERTICAL MIXING DUE TO THE BREAKING OF CRITICAL INTERNAL WAVES ON SLOPING BOUNDARIES [J].
IVEY, GN ;
NOKES, RI .
JOURNAL OF FLUID MECHANICS, 1989, 204 :479-500
[47]  
JACQUET J, 1983, MATH MODELING WATER, P150
[48]   SIMULTANEOUS PATTERNS OF TEMPERATURE, OXYGEN, ZOOPLANKTON AND FISH DISTRIBUTION IN LAKE KINNERET, ISRAEL [J].
KALIKHMAN, I ;
WALLINE, P ;
GOPHEN, M .
FRESHWATER BIOLOGY, 1992, 28 (03) :337-347
[49]  
Kowalik Z., 1993, NUMERICAL MODELING O
[50]  
KRAUS EB, 1967, TELLUS, V19, P98