Interruption of the Calvin cycle inhibits the repair of Photosystem II from photodamage

被引:138
作者
Takahashi, S [1 ]
Murata, N [1 ]
机构
[1] Natl Inst Basic Biol, Div Cellular Regulat, Okazaki, Aichi 4448585, Japan
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2005年 / 1708卷 / 03期
基金
日本学术振兴会;
关键词
Calvin cycle; photoinactivation; photoinhibition; Photosystem II; repair cycle;
D O I
10.1016/j.bbabio.2005.04.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In photosynthetic organisms, impairment of the activities of enzymes in the Calvin cycle enhances the extent of photoinactivation of Photosystem II (PSII). We investigated the molecular mechanism responsible for this phenomenon in the unicellular green alga Chlamydomonas reinhardtii. When the Calvin cycle was interrupted by glycolaldehyde, which is known to inhibit phosphoribulokinase, the extent of photoinactivation of PSII was enhanced. The effect of glycolaldehyde was very similar to that of chloramphenicol, which inhibits protein synthesis de novo in chloroplasts. The interruption of the Calvin cycle by the introduction of a missense mutation into the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) also enhanced the extent of photoinactivation of PSII. In such mutant 10-6C cells, neither glycolaldehyde nor chloramphenicol has any additional effect on photoinactivation. When wild-type cells were incubated under weak light after photodamage to PSII, the activity of PSII recovered gradually and reached a level close to the initial level. However, recovery was inhibited in wild-type cells by glycolaldehyde and was also inhibited in 10-6C cells. Radioactive labelling and Northern blotting demonstrated that the interruption of the Calvin cycle suppressed the synthesis de novo of chloroplast proteins, such as the D1 and D2 proteins, but did not affect the levels of psbA and psbD mRNAs. Our results suggest that the photoinactivation of PSII that is associated with the interruption of the Calvin cycle is attributable primarily to the inhibition of the protein synthesis-dependent repair of PSII at the level of translation in chloroplasts. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:352 / 361
页数:10
相关论文
共 42 条
[1]   Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of Photosystem II in Synechocystis sp PCC 6803 [J].
Allakhverdiev, SI ;
Murata, N .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1657 (01) :23-32
[2]   Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis [J].
Allakhverdiev, SI ;
Nishiyama, Y ;
Miyairi, S ;
Yamamoto, H ;
Inagaki, N ;
Kanesaki, Y ;
Murata, N .
PLANT PHYSIOLOGY, 2002, 130 (03) :1443-1453
[3]   PHOTOINHIBITION AND D1 PROTEIN-DEGRADATION IN PEAS ACCLIMATED TO DIFFERENT GROWTH IRRADIANCES [J].
ARO, EM ;
MCCAFFERY, S ;
ANDERSON, JM .
PLANT PHYSIOLOGY, 1993, 103 (03) :835-843
[4]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[5]   The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons [J].
Asada, K .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1999, 50 :601-639
[6]  
ASADA K, 1984, PLANT CELL PHYSIOL, V25, P1169
[7]   Effect of oxidative stress, produced by cumene hydroperoxide, on the various steps of protein synthesis - Modifications of elongation factor-2 [J].
Ayala, A ;
Parrado, J ;
Bougria, M ;
Machado, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (38) :23105-23110
[8]   DEGRADATION OF THE DI-PROTEIN OF PHOTOSYSTEM-II REACTION-CENTER BY ULTRAVIOLET-B RADIATION REQUIRES THE PRESENCE OF FUNCTIONAL MANGANESE ON THE DONOR SIDE [J].
BARBATO, R ;
FRIZZO, A ;
FRISO, G ;
RIGONI, F ;
GIACOMETTI, GM .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 227 (03) :723-729
[9]   TOO MUCH OF A GOOD THING - LIGHT CAN BE BAD FOR PHOTOSYNTHESIS [J].
BARBER, J ;
ANDERSSON, B .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (02) :61-66
[10]   STUDIES ON THE MECHANISM OF PHOTOINHIBITION IN HIGHER-PLANTS .1. EFFECTS OF HIGH LIGHT-INTENSITY ON CHLOROPLAST ACTIVITIES IN CUCUMBER ADAPTED TO LOW LIGHT [J].
CRITCHLEY, C .
PLANT PHYSIOLOGY, 1981, 67 (06) :1161-1165