Perturbation of the nucleus: A novel Hog1p-independent, Pkc1p-dependent consequence of hypertonic shock in yeast

被引:29
作者
Nanduri, J
Tartakoff, AM [1 ]
机构
[1] Case Western Reserve Univ, Sch Med, Dept Pathol, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Sch Med, Cell Biol Program, Cleveland, OH 44106 USA
关键词
D O I
10.1091/mbc.12.6.1835
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Hypertonic shock of Saccharomyces cerevisiae activates the Hog1p MAP kinase cascade. In contrast, protein kinase C (Pkc1p) and the "cell integrity" MAP kinase cascade are critical for the response to hypotonic shock. We observed that hypertonic shock transiently relocated many, but not all, nuclear and nucleolar proteins to the cytoplasm. We hypothesized that the relocation of nuclear proteins was due to activation of the Hog1p kinase cascade, yet, surprisingly, Hog1p was not required for these effects. In contrast, Pkc1p kinase activity was required, although the Pkc1p MAP kinase cascade and several factors known to lie upstream and downstream of Pkc1p were not. Moreover, sudden induction of a hyperactive form of Pkc1p was sufficient to relocate nuclear proteins. Taken together, these observations show that the scope of involvement of Pkc1p in the organization of the nucleus considerably exceeds what has been characterized previously. The relocation of nuclear proteins is likely to account for the profound inhibition of RNA synthesis that was observed during hypertonic shock.
引用
收藏
页码:1835 / 1841
页数:7
相关论文
共 45 条
[1]   NAB2 - A YEAST NUCLEAR POLYADENYLATED RNA-BINDING PROTEIN ESSENTIAL FOR CELL VIABILITY [J].
ANDERSON, JT ;
WILSON, SM ;
DATAR, KV ;
SWANSON, MS .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (05) :2730-2741
[2]   Signalling in the yeasts: An informational cascade with links to the filamentous fungi [J].
Banuett, F .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (02) :249-+
[3]   AN OSMOSENSING SIGNAL TRANSDUCTION PATHWAY IN YEAST [J].
BREWSTER, JL ;
DEVALOIR, T ;
DWYER, ND ;
WINTER, E ;
GUSTIN, MC .
SCIENCE, 1993, 259 (5102) :1760-1763
[4]   A novel fluorescence-based genetic strategy identifies mutants of Saccharomyces cerevisiae defective for nuclear pore complex assembly [J].
Bucci, M ;
Wente, SR .
MOLECULAR BIOLOGY OF THE CELL, 1998, 9 (09) :2439-2461
[5]   OSMOTIC-STRESS AND THE YEAST CYTOSKELETON - PHENOTYPE-SPECIFIC SUPPRESSION OF AN ACTIN MUTATION [J].
CHOWDHURY, S ;
SMITH, KW ;
GUSTIN, MC .
JOURNAL OF CELL BIOLOGY, 1992, 118 (03) :561-571
[6]  
DAVENPORT KR, 1995, J BIOL CHEM, V270, P30157
[7]   Cell wall stress depolarizes cell growth via hyperactivation of RHO1 [J].
Delley, PA ;
Hall, MN .
JOURNAL OF CELL BIOLOGY, 1999, 147 (01) :163-174
[8]   Regulated nuclear translocation of the Mig1 glucose repressor [J].
DeVit, MJ ;
Waddle, JA ;
Johnston, M .
MOLECULAR BIOLOGY OF THE CELL, 1997, 8 (08) :1603-1618
[9]   Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin β homologs NMD5 and XPO1 [J].
Ferrigno, P ;
Posas, F ;
Koepp, D ;
Saito, H ;
Silver, PA .
EMBO JOURNAL, 1998, 17 (19) :5606-5614
[10]   A YEAST RNA-BINDING PROTEIN SHUTTLES BETWEEN THE NUCLEUS AND THE CYTOPLASM [J].
FLACH, J ;
BOSSIE, M ;
VOGEL, J ;
CORBETT, A ;
JINKS, T ;
WILLINS, DA ;
SILVER, PA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (12) :8399-8407