Diagrammatic method of integration over the unitary group, with applications to quantum transport in mesoscopic systems

被引:214
作者
Brouwer, PW
Beenakker, CWJ
机构
[1] Instituut-Lorentz, University of Leiden, 2300 RA Leiden
关键词
D O I
10.1063/1.531667
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A diagrammatic method is presented for averaging over the circular ensemble of random-matrix theory. The method is applied to phase-coherent conduction through a chaotic cavity (a ''quantum dot'') and through the interface between a normal metal and a superconductor. (C) 1996 American Institute of Physics.
引用
收藏
页码:4904 / 4934
页数:31
相关论文
共 63 条
[21]   WEAK-LOCALIZATION COEXISTING WITH A MAGNETIC-FIELD IN A NORMAL-METAL-SUPERCONDUCTOR MICROBRIDGE [J].
BROUWER, PW ;
BEENAKKER, CWJ .
PHYSICAL REVIEW B, 1995, 52 (06) :R3868-R3871
[22]   INVARIANT INTEGRATION OVER SU(N) [J].
CREUTZ, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (10) :2043-2046
[23]  
Dorokhov O. N., 1982, PISMA ESKP TEOR FIZ, V36, P259
[24]  
DORON E, 1992, NUCL PHYS A, V545, P455
[25]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[26]  
DYSON FJ, 1962, J MATH PHYS, V3, P157, DOI 10.1063/1.1703774
[27]   TEMPERATURE EFFECTS IN QUANTUM DOTS IN THE REGIME OF CHAOTIC DYNAMICS [J].
EFETOV, KB .
PHYSICAL REVIEW LETTERS, 1995, 74 (12) :2299-2302
[28]   SUPERSYMMETRY AND THEORY OF DISORDERED METALS [J].
EFETOV, KB .
ADVANCES IN PHYSICS, 1983, 32 (01) :53-127
[29]   INFORMATION-THEORY AND STATISTICAL NUCLEAR-REACTIONS .2. MANY-CHANNEL CASE AND HAUSER-FESHBACH FORMULA [J].
FRIEDMAN, WA ;
MELLO, PA .
ANNALS OF PHYSICS, 1985, 161 (02) :276-302
[30]  
GORKOV LP, 1979, JETP LETT, V30, P248