Critical comparison of different definitions of topological charge on the lattice -: art. no. 114506

被引:19
作者
Allés, B
D'Elia, M
Di Giacomo, A
Kirchner, R
机构
[1] Univ Milan, Dipartimento Fis, Sez Teor, I-20133 Milan, Italy
[2] Ist Nazl Fis Nucl, I-20133 Milan, Italy
[3] Univ Pisa, Dipartimento Fis, I-56126 Pisa, Italy
[4] Ist Nazl Fis Nucl, I-56126 Pisa, Italy
[5] Univ Cyprus, Dept Nat Sci, CY-1678 Nicosia, Cyprus
[6] Inst Theoret Kernphys, D-53115 Bonn, Germany
关键词
D O I
10.1103/PhysRevD.58.114506
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A detailed comparison is made between the field-theoretic and geometric definitions of topological charge density on the lattice. Their renormalizations with respect to the continuum are analyzed. The definition of the topological susceptibility chi, as used in chiral Ward identities, is reviewed. After performing the subtractions required by it, the different lattice methods yield results in agreement with each other. The methods based on cooling and on counting fermionic zero modes are also discussed. [S0556-2821(98)10921-9].
引用
收藏
页数:6
相关论文
共 26 条
[11]   SCALING PROPERTIES OF THE ENERGY DENSITY IN SU(2) LATTICE GAUGE-THEORY [J].
ENGELS, J ;
KARSCH, F ;
REDLICH, K .
NUCLEAR PHYSICS B, 1995, 435 (1-2) :295-310
[12]   HEATING AND SMALL-SIZE INSTANTONS IN THE O(3) SIGMA-MODEL ON THE LATTICE [J].
FARCHIONI, F ;
PAPA, A .
NUCLEAR PHYSICS B, 1994, 431 (03) :686-708
[13]   SCALING AND ASYMPTOTIC SCALING IN THE SU(2) GAUGE-THEORY [J].
FINGBERG, J ;
HELLER, U ;
KARSCH, F .
NUCLEAR PHYSICS B, 1993, 392 (02) :493-517
[14]  
GIACOMO A, 1996, NUCL PHYS B, V47, P136
[15]   1ST EVIDENCE FOR THE EXISTENCE OF INSTANTONS IN THE QUANTIZED SU(2) LATTICE VACUUM [J].
ILGENFRITZ, EM ;
LAURSEN, ML ;
MULLERPREUSSKER, M ;
SCHIERHOLZ, G ;
SCHILLER, H .
NUCLEAR PHYSICS B, 1986, 268 (3-4) :693-705
[16]   HIGH STATISTICS COMPUTATION OF THE TOPOLOGICAL SUSCEPTIBILITY OF SU(2) GAUGE-THEORY [J].
KRONFELD, AS ;
LAURSEN, ML ;
SCHIERHOLZ, G ;
WIESE, UJ .
NUCLEAR PHYSICS B, 1987, 292 (02) :330-348
[17]   TOPOLOGY OF LATTICE GAUGE-FIELDS [J].
LUSCHER, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (01) :39-48
[18]   A numerical test of the continuum index theorem on the lattice [J].
Narayanan, R ;
Vranas, P .
NUCLEAR PHYSICS B, 1997, 506 (1-2) :373-386
[19]  
PEREZ MG, 1994, NUCL PHYS B, V413, P535, DOI 10.1016/0550-3213(94)90631-9
[20]  
Seiler E., 1987, 1087 MPIPAEPTH