Testing the ratio of two Poisson rates

被引:75
作者
Gu, Kangxia [1 ]
Ng, Hon Keung Tony [1 ]
Tang, Man Lai [2 ]
Schucany, William R. [1 ]
机构
[1] So Methodist Univ, Dept Stat Sci, Dallas, TX 75275 USA
[2] Hong Kong Baptist Univ, Dept Math, Kowloon, Hong Kong, Peoples R China
关键词
asymptotic tests; conditional test; constrained maximum likelihood estimation; level of significance; mid-p; Monte Carlo simulation; power;
D O I
10.1002/bimj.200710403
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we compare the properties of four different general approaches for testing the ratio of two Poisson rates. Asymptotically normal tests, tests based on approximate p-values, exact conditional tests, and a likelihood ratio test are considered. The properties and power performance of these tests are studied by a Monte Carlo simulation experiment. Sample size calculation formulae are given for each of the test procedures and their validities are studied. Some recommendations favoring the likelihood ratio and certain asymptotic tests are based on these simulation results. Finally, all of the test procedures are illustrated with two real life medical examples.
引用
收藏
页码:283 / 298
页数:16
相关论文
共 26 条
[11]  
Haight Frank A., 1967, HDB POISSON DISTRIBU
[12]  
HALD FA, 1960, STAT THEORY ENG APPL
[13]  
HUFFMAN MD, 1984, APPL STAT, V33, P224
[14]   A more powerful test for comparing two Poisson means [J].
Krishnamoorthy, K ;
Thomson, J .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 119 (01) :23-35
[15]   SIGNIFICANCE TESTS IN DISCRETE-DISTRIBUTIONS [J].
LANCASTER, H .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1961, 56 (294) :223-&
[16]   STATISTICAL CONTROL OF COUNTING EXPERIMENTS [J].
LANCASTER, HO .
BIOMETRIKA, 1952, 39 (3-4) :419-422
[17]   Testing the equality of two Poisson means using the rate ratio [J].
Ng, HKT ;
Tang, ML .
STATISTICS IN MEDICINE, 2005, 24 (06) :955-965
[18]  
Poisson S.D., 1837, Recherches sur la probabilite des jugements en matiere criminelle et en matiere civile precedees des regles generales du calcul des probabilites par SD Poisson
[19]  
PRZYBOROWSKI J., 1939, BIOMETRIKA, V31, P313
[20]  
RACTLIFFE JF, 1964, APPL STAT, V13, P84