Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor

被引:104
作者
Gansen, E. J. [1 ]
Rowe, M. A.
Greene, M. B.
Rosenberg, D.
Harvey, T. E.
Su, M. Y.
Hadfield, R. H.
Nam, S. W.
Mirin, R. P.
机构
[1] Natl Inst Stand & Technol, Div Optoelect, Boulder, CO 80305 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Heriot Watt Univ, Edinburgh EH14 4AS, Midlothian, Scotland
关键词
D O I
10.1038/nphoton.2007.173
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Detectors with the capability to directly measure the photon number of a pulse of light(1-3) enable linear optics quantum computing(4), affect the security of quantum communications(5), and can be used to characterize(6-8) and herald(9) non-classical states of light. Here, we demonstrate the photon-number-resolving capabilities of a quantum-dot, optically gated, field-effect transistor that uses quantum dots as optically addressable floating gates in a GaAs/Al0.2Ga0.8As delta-doped field-effect transistor. When the active area of the detector is illuminated, photo-generated carriers trapped by quantum dots screen the gate field, causing a persistent change in the channel current that is proportional to the number of confined carriers. Using weak laser pulses, we show that discrete numbers of trapped carriers produce well resolved changes in the channel current. We demonstrate that for a mean photon number of 1.1, decision regions can be defined such that the field-effect transistor determines the number of detected photons with a probability of accuracy greater than 83%.
引用
收藏
页码:585 / 588
页数:4
相关论文
共 15 条
[1]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[2]   Direct observation of photon pairs at a single output port of a beam-splitter interferometer -: art. no. 063817 [J].
Di Giuseppe, G ;
Atatüre, M ;
Shaw, MD ;
Sergienko, AV ;
Saleh, BEA ;
Teich, MC ;
Miller, AJ ;
Nam, SW ;
Martinis, J .
PHYSICAL REVIEW A, 2003, 68 (06) :4
[3]   Photon-number-resolving detection at a telecommunications wavelength with a charge-integration photon detector [J].
Fujiwara, M ;
Sasaki, M .
OPTICS LETTERS, 2006, 31 (06) :691-693
[4]  
GANSEN EJ, IN PRESS IEEE J SEL
[5]   Photon number resolving detector based on a quantum dot field effect transistor [J].
Kardynal, B. E. ;
Hees, S. S. ;
Shields, A. J. ;
Nicoll, C. ;
Farrer, I. ;
Ritchie, D. A. .
APPLIED PHYSICS LETTERS, 2007, 90 (18)
[6]   Low-noise photon counting with a radio-frequency quantum-dot field-effect transistor [J].
Kardynal, BE ;
Shields, AJ ;
Beattie, NS ;
Farrer, I ;
Cooper, K ;
Ritchie, DA .
APPLIED PHYSICS LETTERS, 2004, 84 (03) :419-421
[7]   A scheme for efficient quantum computation with linear optics [J].
Knill, E ;
Laflamme, R ;
Milburn, GJ .
NATURE, 2001, 409 (6816) :46-52
[8]  
Rose A., 1963, Concepts in Photoconductivity and Allied Problems
[9]   Noise-free high-efficiency photon-number-resolving detectors [J].
Rosenberg, D ;
Lita, AE ;
Miller, AJ ;
Nam, SW .
PHYSICAL REVIEW A, 2005, 71 (06)
[10]   Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency [J].
Rowe, M. A. ;
Gansen, E. J. ;
Greene, M. ;
Hadfield, R. H. ;
Harvey, T. E. ;
Su, M. Y. ;
Nam, S. W. ;
Mirin, R. P. ;
Rosenberg, D. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)