Winged-helix transcription factors and pancreatic development

被引:52
作者
Lantz, KA
Kaestner, KH
机构
[1] Univ Penn, Sch Med, Dept Genet, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Penn Diabet Ctr, Philadelphia, PA 19104 USA
关键词
DNA binding; forkhead; glucose homoeostasis; hepatocyte nuclear factor (HNF); pancreatic development; winged-helix transcription factor;
D O I
10.1042/CS20040309
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The forkhead gene family, named after the founding gene member in Drosciphila, is characterized by a unique DNA-binding domain. This so-called forkhead box encodes a winged-helix DNA-binding motif, the name of which describes the structure of the domain when bound to DNA. The three Fox (forkhead box) group A genes, Foxa1, Foxa2 and Foxa3, are expressed in embryonic endoderm, the germ layer that gives rise to the digestive system, and contribute to the specification of the pancreas and the regulation of glucose homoeostasis. Deletion of the Foxa2 gene in pancreatic beta-cells in mice results in a phenotype resembling PHHl (persistent hyperinsulinaemic hypoglycaemia of infancy). Molecular analyses have demonstrated that Foxa2 is an important regulator of the genes encoding Sur1, Kir6.2 and Schad (short chain L-3-hydroxyacyl-CoA dehydrogenase), mutation of which causes PHHl in humans. Foxa1 was shown to be an essential activator of glucagon gene expression in vivo. An additional winged-helix protein, Foxo1, contributes to pancreatic beta-cell function by regulating the Pdx1 gene, which is required for pancreatic development in cooperation with Foxa2.
引用
收藏
页码:195 / 204
页数:10
相关论文
共 86 条
[51]   daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans [J].
Lin, K ;
Dorman, JB ;
Rodan, A ;
Kenyon, C .
SCIENCE, 1997, 278 (5341) :1319-1322
[52]  
MEHES K, 1976, ACTA PAEDIATR HUNG, V17, P175
[53]   The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic β-cells [J].
Miki, T ;
Nagashima, K ;
Seino, S .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 1999, 22 (02) :113-123
[54]   Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice [J].
Miki, T ;
Nagashima, K ;
Tashiro, F ;
Kotake, K ;
Yoshitomi, H ;
Tamamoto, A ;
Gonoi, T ;
Iwanaga, T ;
Miyazaki, J ;
Seino, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (18) :10402-10406
[55]   Assignment of the human genes for hepatocyte nuclear factor 3-alpha, -beta, and -gamma (HNF3A, HNF3B, HNF3G) to 14q12-q13, 20p11, and 19q13.2-q13.4 [J].
Mincheva, A ;
Lichter, P ;
Schutz, G ;
Kaestner, KH .
GENOMICS, 1997, 39 (03) :417-419
[56]   Familial hyperinsulinemic hypoglycemia caused by a defect in the SCHAD enzyme of mitochondrial fatty acid oxidation [J].
Molven, A ;
Matre, GE ;
Duran, M ;
Wanders, RJ ;
Rishaug, U ;
Njolstad, PR ;
Jellum, E ;
Sovik, O .
DIABETES, 2004, 53 (01) :221-227
[57]  
MONAGHAN AP, 1993, DEVELOPMENT, V119, P567
[58]   Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1 [J].
Nakai, J ;
Biggs, WH ;
Kitamura, T ;
Cavenee, WK ;
Wright, CVE ;
Arden, KC ;
Accili, D .
NATURE GENETICS, 2002, 32 (02) :245-253
[59]   The human HNF-3 genes: Cloning, partial sequence and mutation screening in patients with impaired glucose homeostasis [J].
Navas, MA ;
Vaisse, C ;
Boger, S ;
Heimesaat, M ;
Kollee, LA ;
Stoffel, M .
HUMAN HEREDITY, 2000, 50 (06) :370-381
[60]   The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C-elegans [J].
Ogg, S ;
Paradis, S ;
Gottlieb, S ;
Patterson, GI ;
Lee, L ;
Tissenbaum, HA ;
Ruvkun, G .
NATURE, 1997, 389 (6654) :994-999