Nitroxia:: The pathological consequence of dysfunction in the nitric oxide-cytochrome c oxidase signaling pathway

被引:91
作者
Shiva, S
Oh, JY
Landar, AL
Ulasova, E
Venkatraman, A
Bailey, SM
Darley-Usmar, VM
机构
[1] Univ Alabama, Dept Pathol, Birmingham, AL 35294 USA
[2] Univ Alabama, Dept Environm Hlth Sci, Birmingham, AL 35294 USA
关键词
D O I
10.1016/j.freeradbiomed.2004.10.037
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It is now recognized that mitochondria play an integral role in orchestrating the response of the cell to a wide variety of metabolic and environmental stressors. Of particular interest are the interactions of reactive oxygen and nitrogen species with the organelle and their potential regulatory function. The best understood example is the O-2 sensitive binding of NO (nitric oxide) to the heme group in cytochrome c oxidase. We have proposed that this reversible process serves the function of both regulating the formation of hydrogen peroxide from the respiratory chain for the purposes of signal transduction and controlling O-2 gradients in complex organs such as the liver or heart. It now appears that maladaptation in this pathway leads to a mitochondrial dysfunction which has some of the characteristics of hypoxia, such as a deficit in ATP, but occurs in the presence of normal or enhanced levels of O-2. These are the optimal conditions for the formation of reactive nitrogen species (RNS), such as peroxynitrite which lead to the irreversible modification of proteins. We term this unique pathological condition Nitroxia and describe how it may contribute to the pathology of chronic inflammatory diseases using ethanol-dependent hepatotoxicity as an example. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 77 条
[1]   Chronic ethanol consumption alters the glutathione/glutathione peroxidase-1 system and protein oxidation status in rat liver [J].
Bailey, SM ;
Patel, VB ;
Young, TA ;
Asayama, K ;
Cunningham, CC .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2001, 25 (05) :726-733
[2]   Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III [J].
Bailey, SM ;
Pietsch, EC ;
Cunningham, CC .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 27 (7-8) :891-900
[3]   A review of the role of reactive oxygen and nitrogen species in alcohol-induced mitochondrial dysfunction [J].
Bailey, SM .
FREE RADICAL RESEARCH, 2003, 37 (06) :585-596
[4]   Ethanol consumption increases nitric oxide production in rats, and its peroxynitrite-mediated toxicity is attenuated by polyenylphosphatidylcholine [J].
Baraona, E ;
Zeballos, GA ;
Shoichet, L ;
Mak, KM ;
Lieber, CS .
ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH, 2002, 26 (06) :883-889
[5]   Oxidative damage and tyrosine nitration from peroxynitrite [J].
Beckman, JS .
CHEMICAL RESEARCH IN TOXICOLOGY, 1996, 9 (05) :836-844
[6]   Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide [J].
Borutaite, V ;
Brown, GC .
BIOCHEMICAL JOURNAL, 1996, 315 :295-299
[7]   Mitochondrial production of hydrogen peroxide regulation by nitric oxide and the role of ubisemiquinone [J].
Boveris, A ;
Cadenas, E .
IUBMB LIFE, 2000, 50 (4-5) :245-250
[8]   Mitochondrial superoxide: Production, biological effects, and activation of uncoupling proteins [J].
Brand, MD ;
Affourtit, C ;
Esteves, TC ;
Green, K ;
Lambert, AJ ;
Miwa, S ;
Pakay, JL ;
Parker, N .
FREE RADICAL BIOLOGY AND MEDICINE, 2004, 37 (06) :755-767
[9]   Apoptotic death sensor: an organelle's alter ego? [J].
Bratton, SB ;
Cohen, GM .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2001, 22 (06) :306-315
[10]   Hypothesis:: The mitochondrial NO• signaling pathway, and the transduction of nitrosative to oxidative cell signals:: An alternative function for cytochrome C oxidase [J].
Brookes, P ;
Darley-Usmar, VM .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 32 (04) :370-374