Transcriptional regulation of the gene encoding an alcohol dehydrogenase in the archaeon Sulfolobus solfataricus involves multiple factors and control elements

被引:28
作者
Fiorentino, G
Cannio, R
Rossi, M
Bartolucci, S
机构
[1] Univ Naples Federico II, Dipartimento Chim Biol, I-80134 Naples, Italy
[2] CNR, Ist Biochim Proteine, Naples, Italy
关键词
D O I
10.1128/JB.185.13.3926-3934.2003
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A transcriptionally active region has been identified in the 5' flanking region of the alcohol dehydrogenase gene of the crenarchaeon Sulfolobus solfataricus through the evaluation of the activity of putative transcriptional regulators and the role of the region upstream of the gene under specific metabolic circumstances. Electrophoretic mobility shift assays with crude extracts revealed protein complexes that most likely contain TATA box-associated factors. When the TATA element was deleted from the region, binding sites for both DNA binding proteins, such as the small chromatin structure-modeling Sso7d and Sso10b (Alba), and transcription factors, such as the repressor Lrs14, were revealed. To understand the molecular mechanisms underlying the subs trate-induced expression of the adh gene, the promoter was analyzed for the presence of cis-acting elements recognized by specific transcription factors upon exposure of the cell to benzaldehyde. Progressive dissection of the identified promoter region restricted the analysis to a minimal responsive element (PAL) located immediately upstream of the transcription factor B-responsive element-TATA element, resembling typical bacterial regulatory sequences. A benzaldehyde-activated transcription factor (Bald) that specifically binds to the PAIL cis-acting element was also identified. This protein was purified from heparin-fractionated extracts of benzaldehyde-induced cells and was shown to have a molecular mass of similar to16 kDa. The correlation between S. solfataricus adh gene activation and benzaldehyde-inducible occupation of a specific DNA sequence in its promoter suggests that a molecular signaling mechanism is responsible for the switch of the aromatic aldehyde metabolism as a response to environmental changes.
引用
收藏
页码:3926 / 3934
页数:9
相关论文
共 45 条
[1]   Architecture of nonspecific protein-DNA interactions in the Sso7d-DNA complex [J].
Agback, P ;
Baumann, H ;
Knapp, S ;
Ladenstein, R ;
Härd, T .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (07) :579-584
[2]   Evolutionary change in the structure of the regulatory region that drives tissue and temporally regulated expression of alcohol dehydrogenase gene in Drosophila funebris [J].
Amador, A ;
Papaceit, M ;
Juan, E .
INSECT MOLECULAR BIOLOGY, 2001, 10 (03) :237-247
[3]   THERMOSTABLE NAD+-DEPENDENT ALCOHOL-DEHYDROGENASE FROM SULFOLOBUS-SOLFATARICUS - GENE AND PROTEIN-SEQUENCE DETERMINATION AND RELATIONSHIP TO OTHER ALCOHOL DEHYDROGENASES [J].
AMMENDOLA, S ;
RAIA, CA ;
CARUSO, C ;
CAMARDELLA, L ;
DAURIA, S ;
DEROSA, M ;
ROSSI, M .
BIOCHEMISTRY, 1992, 31 (49) :12514-12523
[4]   Shuttle vectors for hyperthermophilic archaea [J].
Aravalli, RN ;
Garrett, RA .
EXTREMOPHILES, 1997, 1 (04) :183-191
[5]   Transcriptional regulation of an archaeal operon in vivo and in vitro [J].
Bell, SD ;
Cairns, SS ;
Robson, RL ;
Jackson, SP .
MOLECULAR CELL, 1999, 4 (06) :971-982
[6]   The interaction of Alba, a conserved archaeal, chromatin protein, with Sir2 and its regulation by acetylation [J].
Bell, SD ;
Botting, CH ;
Wardleworth, BN ;
Jackson, SP ;
White, MF .
SCIENCE, 2002, 296 (5565) :148-151
[7]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[8]  
Branden C-I., 1975, The Enzymes, V11, P103, DOI DOI 10.1016/S1874-6047(08)60211-5
[9]   The Sulfolobus solfataricus Lrp-like protein LysM regulates lysine biosynthesis in response to lysine availability [J].
Brinkman, AB ;
Bell, SD ;
Lebbink, RJ ;
de Vos, WM ;
van der Oost, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (33) :29537-29549
[10]   An Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus is negatively autoregulated [J].
Brinkman, AB ;
Dahlke, I ;
Tuininga, JE ;
Lammers, T ;
Dumay, V ;
de Heus, E ;
Lebbink, JHG ;
Thomm, M ;
de Vos, WM ;
van der Oost, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (49) :38160-38169