Clay minerals in delta deposits and organic preservation potential on Mars

被引:290
作者
Ehlmann, Bethany L. [1 ]
Mustard, John F. [1 ]
Fassett, Caleb I. [1 ]
Schon, Samuel C. [1 ]
Head, James W., III [1 ]
Marais, David J. Des [2 ]
Grant, John A. [3 ]
Murchie, Scott L. [4 ]
机构
[1] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA
[2] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[3] Smithsonian Inst, Natl Air & Space Museum, Ctr Earth & Planetary Studies, Washington, DC 20013 USA
[4] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA
关键词
D O I
10.1038/ngeo207
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Clay-rich sedimentary deposits are often sites of organic matter preservation(1,2), and have therefore been sought in Mars exploration(3). However, regional deposits of hydrous minerals, including phyllosilicates and sulphates(4,5), are not typically associated with valley networks and layered sediments that provide geomorphic evidence of surface water transport on early Mars(6-8). The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)(9) has recently identified phyllosilicates(10) within three lake basins with fans or deltas that indicate sustained sediment deposition: Eberswalde crater(7,11,12), Holden crater(12,13) and Jezero crater(14). Here we use high-resolution data from the Mars Reconnaissance Orbiter (MRO) to identify clay-rich fluvial-lacustrine sediments within Jezero crater, which has a diameter of 45 km. The crater is an open lake basin on Mars with sedimentary deposits of hydrous minerals sourced from a smectite-rich catchment in the Nili Fossae region. We find that the two deltas and the lowest observed stratigraphic layer within the crater host iron-magnesium smectite clay. Jezero crater holds sediments that record multiple episodes of aqueous activity on early Mars. We suggest that this depositional setting and the smectite mineralogy make these deltaic deposits well suited for the sequestration and preservation of organic material.
引用
收藏
页码:355 / 358
页数:4
相关论文
共 30 条
[11]  
Greeley R., 1987, GEOLOGIC MAP E EQUAT
[12]   Evidence for extensive, olivine-rich bedrock on Mars [J].
Hamilton, VE ;
Christensen, PR .
GEOLOGY, 2005, 33 (06) :433-436
[13]   Discovery of olivine in the Nili Fossae region of Mars [J].
Hoefen, TM ;
Clark, RN ;
Bandfield, JL ;
Smith, MD ;
Pearl, JC ;
Christensen, PR .
SCIENCE, 2003, 302 (5645) :627-630
[14]   Kinetics of montmorillonite dissolution in granitic solutions [J].
Huertas, FJ ;
Caballero, E ;
de Cisneros, CJ ;
Huertas, F ;
Linares, J .
APPLIED GEOCHEMISTRY, 2001, 16 (04) :397-407
[15]   An intense terminal epoch of widespread fluvial activity on early Mars: 2. Increased runoff and paleolake development [J].
Irwin, RP ;
Howard, AD ;
Craddock, RA ;
Moore, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2005, 110 (E12) :1-38
[16]   Assessing the limits of the Modified Gaussian Model for remote spectroscopic studies of pyroxenes on Mars [J].
Kanner, Lisa C. ;
Mustard, John F. ;
Gendrin, Aline .
ICARUS, 2007, 187 (02) :442-456
[17]   Mineral surface control of organic carbon in black shale [J].
Kennedy, MJ ;
Pevear, DR ;
Hill, RJ .
SCIENCE, 2002, 295 (5555) :657-660
[18]   VIKING MISSION AND THE SEARCH FOR LIFE ON MARS [J].
KLEIN, HP .
REVIEWS OF GEOPHYSICS, 1979, 17 (07) :1655-1662
[19]   Evidence for persistent flow and aqueous sedimentation on early Mars [J].
Malin, MC ;
Edgett, KS .
SCIENCE, 2003, 302 (5652) :1931-1934
[20]   Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust [J].
Mangold, N. ;
Poulet, F. ;
Mustard, J. F. ;
Bibring, J.-P. ;
Gondet, B. ;
Langevin, Y. ;
Ansan, V. ;
Masson, Ph. ;
Fassett, C. ;
Head, J. W., III ;
Hoffmann, H. ;
Neukum, G. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2007, 112 (E8)