Cycle decompositions and simulated annealing

被引:32
作者
Trouve, A
机构
[1] Lab. Mathematiques l'Ecl. Normale S., URA 732, Ecole Normale Supérieure, 75230, Paris Cedex 05
关键词
cycle decomposition; large deviations; generalized simulated annealing; rate of convergence;
D O I
10.1137/S0363012993258586
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The behavior of simulated annealing algorithms is tightly related to the hierarchical decomposition of their configuration spaces in cycles. In the generalized annealing framework, this decomposition is defined recursively. In this paper, its structure is extensively studied, and it is shown that the decomposition can be achieved through an implementable algorithm which allows exact computation of the fundamental constants underlying the behavior of these algorithms.
引用
收藏
页码:966 / 986
页数:21
相关论文
共 14 条
[1]  
Azencott R., 1992, SIMULATED ANNEALING
[3]   A LIMIT-THEOREM FOR A CLASS OF INHOMOGENEOUS MARKOV-PROCESSES [J].
CHIANG, TS ;
CHOW, YY .
ANNALS OF PROBABILITY, 1989, 17 (04) :1483-1502
[4]   ASYMPTOTIC-BEHAVIOR OF EIGENVALUES AND RANDOM UPDATING SCHEMES [J].
CHIANG, TS ;
CHOW, YS .
APPLIED MATHEMATICS AND OPTIMIZATION, 1993, 28 (03) :259-275
[5]  
DESAI M, 1992, QUASISTATISTICALLY C
[6]  
Freidlin MI, 1984, RANDOM PERTURBATIONS
[7]   COOLING SCHEDULES FOR OPTIMAL ANNEALING [J].
HAJEK, B .
MATHEMATICS OF OPERATIONS RESEARCH, 1988, 13 (02) :311-329
[8]   LARGE-TIME BEHAVIOR OF PERTURBED DIFFUSION MARKOV-PROCESSES WITH APPLICATIONS TO THE 2ND EIGENVALUE PROBLEM FOR FOKKER-PLANCK OPERATORS AND SIMULATED ANNEALING [J].
HWANG, CR ;
SHEU, SJ .
ACTA APPLICANDAE MATHEMATICAE, 1990, 19 (03) :253-295
[9]  
HWANG CR, 1988, WEAK REVERSIBILITY C
[10]  
HWANG CR, 1992, J THEORET PROBAB, V5, P223