Quantitation of the reconstruction quality of a four-dimensional computed tomography process for lung cancer patients

被引:87
作者
Lu, W
Parikh, PJ
El Naqa, IM
Nystrom, MM
Hubenschmidt, JP
Wahab, SH
Mutic, S
Singh, AK
Christensen, GE
Bradley, JD
Low, DA [1 ]
机构
[1] Washington Univ, Sch Med, Dept Radiat Oncol, St Louis, MO 63110 USA
[2] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
关键词
breathing motion; spirometry; radiation therapy;
D O I
10.1118/1.1870152
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
We have developed a four-dimensional computed tomography (4D CT) technique for mapping breathing motion in radiotherapy treatment planning. A multislice CT scanner (1.5 mm slices) operated in cine mode was used to acquire 12 contiguous slices in each couch position for 15 consecutive scans (0.5 s rotation, 0.25 s between scans) while the patient underwent simultaneous quantitative spirometry measurements to provide a sorting metric. The spirometry-sorted scans were used to reconstruct a 4D data set. A critical factor for 4D CT is quantifying the reconstructed data set quality which we measure by correlating the metric used relative to internal-object motion. For this study, the internal air content within the lung was used as a surrogate for internal motion measurements. Thresholding and image morphological operations were applied to delineate the air-containing tissues (lungs, trachea) from each CT slice. The Hounsfield values were converted to the internal air content (V). The relationship between the air content and spirometer-measured tidal volume (v) was found to be quite linear throughout the lungs and was used to estimate the overall accuracy and precision of tidal volume-sorted 4D CT. Inspection of the CT-scan air content as a function of tidal volume showed excellent correlations (typically r > 0.99) throughout the lung volume. Because of the discovered linear relationship, the ratio of internal air content to tidal volume was indicative of the fraction of air change in each couch position. Theoretically, due to air density differences within the lung and in room, the sum of these ratios would equal 1.11. For 12 patients, the mean value was 1.08 +/- 0.06, indicating the high quality of spirometry-based image sorting. The residual of a first-order fit between v and V was used to estimate the process precision. For all patients, the precision was better than 8%, with a mean value of 5.1% +/- 1.9%. This quantitative analysis highlights the value of using spirometry as the metric in sorting CT scans. The 4D reconstruction provides the CT data required to measure the three-dimensional trajectory of tumor and lung tissue during free breathing. (c) 2005 American Association of Physicists in Medicine.
引用
收藏
页码:890 / 901
页数:12
相关论文
共 42 条
[1]   Evaluation of the influence of breathing on the movement and modeling of lung tumors [J].
Allen, AM ;
Siracuse, KM ;
Hayman, JA ;
Balter, JM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2004, 58 (04) :1251-1257
[2]  
Bracewell R.N., 1965, The Fourier Transform and Its Applications
[3]   Fluoroscopic study of tumor motion due to breathing: Facilitating precise radiation therapy for lung cancer patients [J].
Chen, QS ;
Weinhous, MS ;
Deibel, FC ;
Ciezki, JP ;
Macklis, RM .
MEDICAL PHYSICS, 2001, 28 (09) :1850-1856
[4]  
CHRISTENSEN G, 2004, 14 INT C US COMP RAD
[5]  
COATES RFW, 1975, MODERN COMMUNICATION
[6]   Tumor location cannot predict the mobility of lung tumors: A 3D analysis of data generated from multiple CT scans [J].
de Koste, JRV ;
Lagerwaard, FJ ;
Nijssen-Visser, MRJ ;
Graveland, WJ ;
Senan, S .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2003, 56 (02) :348-354
[7]   What margins should be added to the clinical target volume in radiotherapy treatment planning for lung cancer? [J].
Ekberg, L ;
Holmberg, O ;
Wittgren, L ;
Bjelkengren, G ;
Landberg, T .
RADIOTHERAPY AND ONCOLOGY, 1998, 48 (01) :71-77
[8]  
ELNAQA I, 2004, P 14 INT C US COMP R
[9]   Respiration-correlated spiral CT: A method of measuring respiratory-induced anatomic motion for radiation treatment planning [J].
Ford, EC ;
Mageras, GS ;
Yorke, E ;
Ling, CC .
MEDICAL PHYSICS, 2003, 30 (01) :88-97
[10]  
Gierga D., 2003, International Journal of Radiation Oncology Biology Physics, V57, pS186, DOI 10.1016/S0360-3016(03)00981-7