PV power forecast using a nonparametric PV model

被引:164
作者
Almeida, Marcelo Pinho [1 ]
Perpinan, Oscar [2 ,3 ]
Narvarte, Luis [3 ]
机构
[1] Univ Sao Paulo, Inst Energia & Ambiente, Sao Paulo, Brazil
[2] UPM, Dept Elect Engn, ETSIDI, Madrid 28012, Spain
[3] Inst Energia Solar, Madrid, Spain
关键词
PV plant; Numerical Weather Prediction; Weather Research and Forecasting; PV power forecast; Random Forest; Quantile Regression; MEAN-SQUARE ERROR; SOLAR; PREDICTION; OUTPUT; RMSE; MAE;
D O I
10.1016/j.solener.2015.03.006
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Forecasting the AC power output of a PV plant accurately is important both for plant owners and electric system operators. Two main categories of PV modeling are available: the parametric and the nonparametric. In this paper, a methodology using a nonparametric PV model is proposed, using as inputs several forecasts of meteorological variables from a Numerical Weather Forecast model, and actual AC power measurements of PV plants. The methodology was built upon the R environment and uses Quantile Regression Forests as machine learning tool to forecast AC power with a confidence interval. Real data from five PV plants was used to validate the methodology, and results show that daily production is predicted with an absolute cvMBE lower than 1.3%. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:354 / 368
页数:15
相关论文
共 28 条
[11]   Solar forecasting methods for renewable energy integration [J].
Inman, Rich H. ;
Pedro, Hugo T. C. ;
Coimbra, Carlos F. M. .
PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2013, 39 (06) :535-576
[12]   Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment [J].
Jolliff, Jason K. ;
Kindle, John C. ;
Shulman, Igor ;
Penta, Bradley ;
Friedrichs, Marjorie A. M. ;
Helber, Robert ;
Arnone, Robert A. .
JOURNAL OF MARINE SYSTEMS, 2009, 76 (1-2) :64-82
[13]   Regional PV power prediction for improved grid integration [J].
Lorenz, Elke ;
Scheidsteger, Thomas ;
Hurka, Johannes ;
Heinemann, Detlev ;
Kurz, Christian .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (07) :757-771
[14]   Forecasting Power Output of Solar Photovoltaic System Using Wavelet Transform and Artificial Intelligence Techniques [J].
Mandal, Paras ;
Madhira, Surya Teja Swarroop ;
Ul Haque, Ashraf ;
Meng, Julian ;
Pineda, Ricardo L. .
COMPLEX ADAPTIVE SYSTEMS 2012, 2012, 12 :332-337
[15]   Power output fluctuations in large scale PV plants: one year observations with one second resolution and a derived analytic model [J].
Marcos, Javier ;
Marroyo, Luis ;
Lorenzo, Eduardo ;
Alvira, David ;
Izco, Eloisa .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (02) :218-227
[16]  
Meinshausen N, 2006, J MACH LEARN RES, V7, P983
[17]  
MURPHY AH, 1988, MON WEATHER REV, V116, P2417, DOI 10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO
[18]  
2
[19]   Multivariable geostatistics in S: the gstat package [J].
Pebesma, EJ .
COMPUTERS & GEOSCIENCES, 2004, 30 (07) :683-691
[20]   Assessment of forecasting techniques for solar power production with no exogenous inputs [J].
Pedro, Hugo T. C. ;
Coimbra, Carlos F. M. .
SOLAR ENERGY, 2012, 86 (07) :2017-2028