Gene essentiality and the topology of protein interaction networks

被引:88
作者
Coulomb, S
Bauer, M
Bernard, D
Marsolier-Kergoat, MC [1 ]
机构
[1] CEA Saclay, Serv Biochim & Genet Mol, F-91191 Gif Sur Yvette, France
[2] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
关键词
network; protein interaction; topology; mutational resistance; gene dispensability; yeast;
D O I
10.1098/rspb.2005.3128
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The mechanistic bases for gene essentiality and for cell mutational resistance have long been disputed. The recent availability of large protein interaction databases has fuelled the analysis of protein interaction networks and several authors have proposed that gene dispensability could be strongly related to some topological parameters of these networks. However, many results were based on protein interaction data whose biases were not taken into account. In this article, we show that the essentiality of a gene in yeast is poorly related to the number of interactants (or degree) of the corresponding protein and that the physiological consequences of gene deletions are unrelated to several other properties of proteins in the interaction networks, such as the average degrees of their nearest neighbours, their clustering coefficients or their relative distances. We also found that yeast protein interaction networks lack degree correlation, i.e. a propensity for their vertices to associate according to their degrees. Gene essentiality and more generally cell resistance against mutations thus seem largely unrelated to many parameters of protein network topology.
引用
收藏
页码:1721 / 1725
页数:5
相关论文
共 22 条
  • [1] Potential artefacts in protein-interaction networks
    Aloy, P
    Russell, RB
    [J]. FEBS LETTERS, 2002, 530 (1-3) : 253 - 254
  • [2] Convergent evolution of gene networks by single-gene duplications in higher eukaryotes
    Amoutzias, GD
    Robertson, DL
    Oliver, SG
    Bornberg-Bauer, E
    [J]. EMBO REPORTS, 2004, 5 (03) : 274 - 279
  • [3] Network biology:: Understanding the cell's functional organization
    Barabási, AL
    Oltvai, ZN
    [J]. NATURE REVIEWS GENETICS, 2004, 5 (02) : 101 - U15
  • [4] Structure and evolution of protein interaction networks:: a statistical model for link dynamics and gene duplications -: art. no. 51
    Berg, J
    Lässig, M
    Wagner, A
    [J]. BMC EVOLUTIONARY BIOLOGY, 2004, 4 (1)
  • [5] Protein interactions - Two methods for assessment of the reliability of high throughput observations
    Deane, CM
    Salwinski, L
    Xenarios, I
    Eisenberg, D
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (05) : 349 - 356
  • [6] Functional organization of the yeast proteome by systematic analysis of protein complexes
    Gavin, AC
    Bösche, M
    Krause, R
    Grandi, P
    Marzioch, M
    Bauer, A
    Schultz, J
    Rick, JM
    Michon, AM
    Cruciat, CM
    Remor, M
    Höfert, C
    Schelder, M
    Brajenovic, M
    Ruffner, H
    Merino, A
    Klein, K
    Hudak, M
    Dickson, D
    Rudi, T
    Gnau, V
    Bauch, A
    Bastuck, S
    Huhse, B
    Leutwein, C
    Heurtier, MA
    Copley, RR
    Edelmann, A
    Querfurth, E
    Rybin, V
    Drewes, G
    Raida, M
    Bouwmeester, T
    Bork, P
    Seraphin, B
    Kuster, B
    Neubauer, G
    Superti-Furga, G
    [J]. NATURE, 2002, 415 (6868) : 141 - 147
  • [7] Global analysis of protein expression in yeast
    Ghaemmaghami, S
    Huh, W
    Bower, K
    Howson, RW
    Belle, A
    Dephoure, N
    O'Shea, EK
    Weissman, JS
    [J]. NATURE, 2003, 425 (6959) : 737 - 741
  • [8] Functional profiling of the Saccharomyces cerevisiae genome
    Giaever, G
    Chu, AM
    Ni, L
    Connelly, C
    Riles, L
    Véronneau, S
    Dow, S
    Lucau-Danila, A
    Anderson, K
    André, B
    Arkin, AP
    Astromoff, A
    El Bakkoury, M
    Bangham, R
    Benito, R
    Brachat, S
    Campanaro, S
    Curtiss, M
    Davis, K
    Deutschbauer, A
    Entian, KD
    Flaherty, P
    Foury, F
    Garfinkel, DJ
    Gerstein, M
    Gotte, D
    Güldener, U
    Hegemann, JH
    Hempel, S
    Herman, Z
    Jaramillo, DF
    Kelly, DE
    Kelly, SL
    Kötter, P
    LaBonte, D
    Lamb, DC
    Lan, N
    Liang, H
    Liao, H
    Liu, L
    Luo, CY
    Lussier, M
    Mao, R
    Menard, P
    Ooi, SL
    Revuelta, JL
    Roberts, CJ
    Rose, M
    Ross-Macdonald, P
    Scherens, B
    [J]. NATURE, 2002, 418 (6896) : 387 - 391
  • [9] Role of duplicate genes in genetic robustness against null mutations
    Gu, ZL
    Steinmetz, LM
    Gu, X
    Scharfe, C
    Davis, RW
    Li, WH
    [J]. NATURE, 2003, 421 (6918) : 63 - 66
  • [10] Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
    Ho, Y
    Gruhler, A
    Heilbut, A
    Bader, GD
    Moore, L
    Adams, SL
    Millar, A
    Taylor, P
    Bennett, K
    Boutilier, K
    Yang, LY
    Wolting, C
    Donaldson, I
    Schandorff, S
    Shewnarane, J
    Vo, M
    Taggart, J
    Goudreault, M
    Muskat, B
    Alfarano, C
    Dewar, D
    Lin, Z
    Michalickova, K
    Willems, AR
    Sassi, H
    Nielsen, PA
    Rasmussen, KJ
    Andersen, JR
    Johansen, LE
    Hansen, LH
    Jespersen, H
    Podtelejnikov, A
    Nielsen, E
    Crawford, J
    Poulsen, V
    Sorensen, BD
    Matthiesen, J
    Hendrickson, RC
    Gleeson, F
    Pawson, T
    Moran, MF
    Durocher, D
    Mann, M
    Hogue, CWV
    Figeys, D
    Tyers, M
    [J]. NATURE, 2002, 415 (6868) : 180 - 183