Targeting miRNAs in osteoblast differentiation and bone formation

被引:87
作者
Hu, Rong [1 ]
Li, Hui [1 ]
Liu, Wei [1 ]
Yang, Li [1 ]
Tan, Yan-Fei [1 ]
Luo, Xiang-Hang [1 ]
机构
[1] Cent S Univ, Xiangya Hosp 2, Inst Endocrinol & Metab, Changsha 410011, Hunan, Peoples R China
关键词
antagomirs; bone biology; mesenchymal stromal cells; miRNA; miRNA profiling; osteoblast differentiation; target prediction; MICRORNA EXPRESSION PROFILES; GROWTH-FACTOR-BETA; GENE-EXPRESSION; ANTISENSE OLIGONUCLEOTIDES; OSTEOGENIC DIFFERENTIATION; INTERFERING RNAS; DOWN-REGULATION; STROMAL CELLS; STEM-CELLS; IN-VITRO;
D O I
10.1517/14728222.2010.512916
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Importance of the field: Bone tissue arises from mesenchymal stromal cells (MSCs) differentiated into the osteoblast lineage by genetic and epigenetic mechanisms. Emerging evidence indicates that the class of small non-coding single-stranded RNAs known as "microRNAs (miRNAs)" also plays a critical role in this process. Areas covered in this review: In this short review, we summarize the biology and functional mechanisms of miRNAs. Importantly, we discuss miRNA expression, miRNA function, miRNA target prediction, miRNA overexpression and inhibition methods applied in osteoblastogenesis. What the reader will gain: We discuss the potential therapeutic opportunities and challenges for improving the treatment of bone-related diseases by using miRNAs as a therapeutic target. Take home message: Although various microRNAs regulate cell proliferation and differentiation, only a few miRNAs has been reported so far to play a key role in the regulation of osteoblast differentiation and bone formation.
引用
收藏
页码:1109 / 1120
页数:12
相关论文
共 113 条
  • [1] MicroRNA functions in animal development and human disease
    Alvarez-Garcia, I
    Miska, EA
    [J]. DEVELOPMENT, 2005, 132 (21): : 4653 - 4662
  • [2] MicroRNAs: Target Recognition and Regulatory Functions
    Bartel, David P.
    [J]. CELL, 2009, 136 (02) : 215 - 233
  • [3] MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004)
    Bartel, David P.
    [J]. CELL, 2007, 131 (04) : 11 - 29
  • [4] Identification of hundreds of conserved and nonconserved human microRNAs
    Bentwich, I
    Avniel, A
    Karov, Y
    Aharonov, R
    Gilad, S
    Barad, O
    Barzilai, A
    Einat, P
    Einav, U
    Meiri, E
    Sharon, E
    Spector, Y
    Bentwich, Z
    [J]. NATURE GENETICS, 2005, 37 (07) : 766 - 770
  • [5] A twist code determines the onset of osteoblast differentiation
    Bialek, P
    Kern, B
    Yang, XL
    Schrock, M
    Sosic, D
    Hong, N
    Wu, H
    Yu, K
    Ornitz, DM
    Olson, EN
    Justice, MJ
    Karsenty, G
    [J]. DEVELOPMENTAL CELL, 2004, 6 (03) : 423 - 435
  • [6] A system for stable expression of short interfering RNAs in mammalian cells
    Brummelkamp, TR
    Bernards, R
    Agami, R
    [J]. SCIENCE, 2002, 296 (5567) : 550 - 553
  • [7] MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias
    Calin, GA
    Liu, CG
    Sevignani, C
    Ferracin, M
    Felli, N
    Dumitru, CD
    Shimizu, M
    Cimmino, A
    Zupo, S
    Dono, M
    Dell'Aquila, ML
    Alder, H
    Rassenti, L
    Kipps, TJ
    Bullrich, F
    Negrini, M
    Croce, CM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (32) : 11755 - 11760
  • [8] Origins and Mechanisms of miRNAs and siRNAs
    Carthew, Richard W.
    Sontheimer, Erik J.
    [J]. CELL, 2009, 136 (04) : 642 - 655
  • [9] Real-time quantification of microRNAs by stem-loop RT-PCR
    Chen, CF
    Ridzon, DA
    Broomer, AJ
    Zhou, ZH
    Lee, DH
    Nguyen, JT
    Barbisin, M
    Xu, NL
    Mahuvakar, VR
    Andersen, MR
    Lao, KQ
    Livak, KJ
    Guegler, KJ
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 (20) : e179.1 - e179.9
  • [10] The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation
    Chen, JF
    Mandel, EM
    Thomson, JM
    Wu, QL
    Callis, TE
    Hammond, SM
    Conlon, FL
    Wang, DZ
    [J]. NATURE GENETICS, 2006, 38 (02) : 228 - 233