Glycopeptide and lipoglycopeptide antibiotics

被引:517
作者
Kahne, D [1 ]
Leimkuhler, C
Wei, L
Walsh, C
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Sch Med, Dept Biol Chem & Mol Pharmacol, Cambridge, MA 02138 USA
[2] Princeton Univ, Dept Chem, Princeton, NJ 08544 USA
关键词
D O I
10.1021/cr030103a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Today, the frequency of resistance to glycopeptide antibiotics represents a serious threat to public health. Thus, research into the molecular basis for glycopeptide resistance aims to design new glycopeptide antibiotics with activity against both sensitive and resistant bacterial strains. Against this background, this review describes the structures of a set of important natural glycopeptide antibiotics and outlines their biosynthetic pathways. It discusses what is known about the mode of action of the glycopeptides and how structural differences influence biological activity. Furthermore, it illustrates how resistance to the glycopeptides develops and summarizes efforts to develop glycopeptides that can overcome resistance. Finally, it outlines how access to unnatural glycopeptide has provided tools to identify new targets of the glycopeptide class and activity differences observed for natural glycopeptides against different bacterial pathogens.
引用
收藏
页码:425 / 448
页数:24
相关论文
共 139 条
[1]   Identification of potent and broad-spectrum antibiotics from SAR studies of a synthetic vancomycin analogue [J].
Ahrendt, KA ;
Olsen, JA ;
Wakao, M ;
Trias, J ;
Ellman, JA .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2003, 13 (10) :1683-1686
[2]   Mechanism of action of oritavancin and related glycopeptide antibiotics [J].
Allen, NE ;
Nicas, TI .
FEMS MICROBIOLOGY REVIEWS, 2003, 26 (05) :511-532
[3]   Hexapeptide derivatives of glycopeptide antibiotics: Tools for mechanism of action studies [J].
Allen, NE ;
LeTourneau, DL ;
Hobbs, JN ;
Thompson, RC .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (08) :2344-2348
[4]   LIPID-PHOSPHOACETYLMURAMYL-PENTAPEPTIDE AND LIPID-PHOSPHODISACCHARIDE-PENTAPEPTIDE - PRESUMED MEMBRANE TRANSPORT INTERMEDIATES IN CELL WALL SYNTHESIS [J].
ANDERSON, JS ;
MATSUHASHI, M ;
HASKIN, MA ;
STROMINGER, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1965, 53 (04) :881-+
[5]   Role of class A penicillin-binding proteins in PBP5-mediated β-lactam resistance in Enterococcus faecalis [J].
Arbeloa, A ;
Segal, H ;
Hugonnet, JE ;
Josseaume, N ;
Dubost, L ;
Brouard, JP ;
Gutmann, L ;
Mengin-Lecreulx, D ;
Arthur, M .
JOURNAL OF BACTERIOLOGY, 2004, 186 (05) :1221-1228
[6]   GENETICS AND MECHANISMS OF GLYCOPEPTIDE RESISTANCE IN ENTEROCOCCI [J].
ARTHUR, M ;
COURVALIN, P .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1993, 37 (08) :1563-1571
[7]   Regulated interactions between partner and non-partner sensors and response regulators that control glycopeptide resistance gene expression in enterococci [J].
Arthur, M ;
Depardieu, F ;
Courvalin, P .
MICROBIOLOGY-UK, 1999, 145 :1849-1858
[8]   Single-cell analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of a VanB-type Enterococcus faecalis [J].
Baptista, M ;
Rodrigues, P ;
Depardieu, F ;
Courvalin, P ;
Arthur, M .
MOLECULAR MICROBIOLOGY, 1999, 32 (01) :17-28
[9]   THE STRUCTURE AND MODE OF ACTION OF GLYCOPEPTIDE ANTIBIOTICS OF THE VANCOMYCIN GROUP [J].
BARNA, JCJ ;
WILLIAMS, DH .
ANNUAL REVIEW OF MICROBIOLOGY, 1984, 38 :339-357
[10]  
BARRETT D, IN PRESS J BACTERIOL