On graphs with algebraic connectivity equal to minimum edge density

被引:19
作者
Fallat, SM [1 ]
Kirkland, S
Pati, S
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Indian Inst Technol Guwahati, Dept Math, Assam 781039, India
关键词
graphs; algebraic connectivity; edge density; edge cut; Laplacian matrix;
D O I
10.1016/S0024-3795(02)00538-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an undirected graph G = (V, E) and a nonempty subset X subset of V, the edge density of X is given by rho(X) = \V\ \E-X\/\X\ \V\X\, where E-X is the set of all edges with one end in X and the other end in V\X. It is known that the algebraic connectivity of G, denoted by alpha(G), satisfies alpha(G) less than or equal to min(Xsubset of or equal toV) rho(X). In this paper we study the graphs G for which equality holds in the above inequality. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:31 / 50
页数:20
相关论文
共 10 条
[1]  
[Anonymous], LINE MULTILINEAR ALG
[2]  
Cvetkovic D. M., 1980, Spectra of Graphs-Theory and Application
[3]  
FIEDLER M, 1975, CZECH MATH J, V25, P607
[4]  
FIEDLER M, 1973, CZECH MATH J, V23, P298
[5]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238
[6]  
HORN R. A., 2012, Matrix Analysis, Vsecond, DOI 10.1017/CBO9780511810817
[7]  
MERRIS R, 1994, LINEAR ALGEBRA APPL, V198, P143
[8]  
Merris R., 1995, LINEAR MULTILINEAR A, V39, P19, DOI DOI 10.1080/03081089508818377
[9]   EIGENVALUES, DIAMETER, AND MEAN DISTANCE IN GRAPHS [J].
MOHAR, B .
GRAPHS AND COMBINATORICS, 1991, 7 (01) :53-64
[10]   LAPLACE EIGENVALUES OF GRAPHS - A SURVEY [J].
MOHAR, B .
DISCRETE MATHEMATICS, 1992, 109 (1-3) :171-183