Detection of glioma evolution on longitudinal MRI studies

被引:4
作者
Angelini, E. D. [1 ]
Atif, J. [1 ]
Delon, J. [1 ]
Mandonnet, E. [2 ]
Duffau, H. [2 ]
Capelle, L. [2 ]
机构
[1] Ecole Natl Super Telecommun Bretagne, CNRS, GET, UMR 5141, Paris, France
[2] Hop La Pitie Salpetriere, Dept Neurosurg, F-75013 Paris, France
来源
2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3 | 2007年
关键词
biomedical imaging; magnetic resonance imaging; brain tumor; longitudinal studies;
D O I
10.1109/ISBI.2007.356785
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detection of millimetric brain tumor growth patterns on longitudinal MRI acquisitions remains challenging in clinical practice. A simple difference map of two longitudinal co-registered MRI volumes fails to detect specific tumor evolution, due to non-linear contrast change between the two data sets. This paper presents a novel method for detection and quantification of tumor evolution in longitudinal single-protocol MRI studies. A computational framework was designed to enable comparison of co-registered MRI volumes based on gray-scale "normalization" via midway histogram equalization and computation of difference maps. Midway-based difference maps provided very selective representations of structural modifications within pathological areas and on the surrounding structures. Quantitative tumor growth parameters between times t(1) and t(2) were computed on the difference maps, provided that a manual segmentation of the tumor is available at time t1. The method was evaluated on longitudinal SPGR (T1-weighted) and FLAIR (T2-weighted) MRI volumes for two patients harboring a WHO grade II glioma. Results for quantification of tumor growth from midway difference maps are presented, showing sub-millimetric precision of clinical growth indices, when compared to manual tracing estimations.
引用
收藏
页码:49 / +
页数:2
相关论文
共 8 条
[1]  
Clatz Olivier, 2005, IEEE T MED IMAGING, V24
[2]   Exact histogram specification [J].
Coltuc, D ;
Bolon, P ;
Chassery, JM .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (05) :1143-1152
[3]  
COX IJ, 2006, IEEE INT C IM PROC W, V2, P366
[4]   Midway image equalization [J].
Delon, J .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2004, 21 (02) :119-134
[5]   Automated segmentation of MR images of brain tumors [J].
Kaus, MR ;
Warfield, SK ;
Nabavi, A ;
Black, PM ;
Jolesz, FA ;
Kikinis, R .
RADIOLOGY, 2001, 218 (02) :586-591
[6]   A longitudinal study of brain morphometrics using quantitative magnetic resonance imaging and difference image analysis [J].
Liu, RSN ;
Lemieux, L ;
Bell, GS ;
Sisodiya, SM ;
Shorvon, SD ;
Sander, JWAS ;
Duncan, JS .
NEUROIMAGE, 2003, 20 (01) :22-33
[7]   New variants of a method of MRI scale standardization [J].
Nyúl, LG ;
Udupa, JK ;
Zhang, X .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2000, 19 (02) :143-150
[8]   Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas [J].
Pallud, Johan ;
Mandonnet, Emmanuel ;
Duffau, Hugues ;
Kujas, Michele ;
Guillevin, Remy ;
Galanaud, Damien ;
Taillandier, Luc ;
Capelle, Laurent .
ANNALS OF NEUROLOGY, 2006, 60 (03) :380-383