Wind turbine boundary layer arrays for Cartesian and staggered configurations-Part I, flow field and power measurements

被引:30
作者
Hamilton, Nicholas [1 ]
Melius, Matthew [1 ]
Cal, Raul Bayoan [1 ]
机构
[1] Portland State Univ, Dept Mech & Mat Engn, Portland, OR 97207 USA
基金
美国国家科学基金会;
关键词
atmospheric boundary layer; wind turbine array; wake recovery; turbulence; WAKE; TUNNEL; FARM;
D O I
10.1002/we.1697
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Model wind turbine arrays were developed for the purpose of investigating the wake interaction and turbine canopy layer in a standard cartesian and row-offset turbine array configurations. Stereographic particle image velocimetry was used to collect flow data upstream and downstream of entrance and exit row turbines in each configuration. Wakes for all cases were analyzed for energy content and recovery behavior including entrainment of high-momentum flow from above the turbine canopy layer. The row-offset arrangement of turbines within an array grants an increase in streamwise spacing of devices and allows for greater wake remediation between successive rows. These effects are seen in exit row turbine wakes as changes to statistical quantities including the in-plane Reynolds stress, -(uv) over bar, and the production of turbulence. The recovery of wakes also strongly mitigates the perceived underperformance of wind turbines within an array. The flux of kinetic energy is demonstrated to be more localized in the entrance rows and in the offset arrangement. Extreme values for the flux of kinetic energy are about 7.5% less in the exit row of the cartesian arrangement than in the offset arrangement. Measurements of mechanical torque at entrance and exit row turbines lead to curves of power coefficient and demonstrate an increase in efficiency in row-offset configurations. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:277 / 295
页数:19
相关论文
共 32 条
[2]  
[Anonymous], 2012, An Introduction To Boundary Layer Meteorology
[3]   Modelling and measurements of wakes in large wind farms [J].
Barthelmie, R. J. ;
Rathmann, O. ;
Frandsen, S. T. ;
Hansen, K. ;
Politis, E. ;
Prospathopoulos, J. ;
Rados, K. ;
Cabezon, A. ;
Schlez, W. ;
Phillips, J. ;
Neubert, A. ;
Schepers, J. G. ;
van der Pijl, S. P. .
SCIENCE OF MAKING TORQUE FROM WIND, 2007, 75
[4]  
Burton T., 2011, WIND ENERGY HDB
[5]   Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer [J].
Cal, Raul Bayoan ;
Lebron, Jose ;
Castillo, Luciano ;
Kang, Hyung Suk ;
Meneveau, Charles .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2010, 2 (01)
[6]   Reynolds number dependence of turbulence statistics in the wake of wind turbines [J].
Chamorro, Leonardo P. ;
Arndt, R. E. A. ;
Sotiropoulos, F. .
WIND ENERGY, 2012, 15 (05) :733-742
[7]   Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study [J].
Chamorro, Leonardo P. ;
Porte-Agel, Fernando .
ENERGIES, 2011, 4 (11) :1916-1936
[8]   Turbulent Flow Properties Around a Staggered Wind Farm [J].
Chamorro, Leonardo P. ;
Arndt, R. E. A. ;
Sotiropoulos, Fotis .
BOUNDARY-LAYER METEOROLOGY, 2011, 141 (03) :349-367
[9]   A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects [J].
Chamorro, Leonardo P. ;
Porte-Agel, Fernando .
BOUNDARY-LAYER METEOROLOGY, 2009, 132 (01) :129-149
[10]   WIND-TUNNEL SIMULATION OF ADIABATIC ATMOSPHERIC BOUNDARY-LAYER BY ROUGHNESS, BARRIER AND MIXING-DEVICE METHODS [J].
COOK, NJ .
JOURNAL OF INDUSTRIAL AERODYNAMICS, 1978, 3 (2-3) :157-176