Class II histone deacetylases: Structure, function, and regulation

被引:223
作者
Bertos, NR [1 ]
Wang, AH [1 ]
Yang, XJ [1 ]
机构
[1] McGill Univ, Ctr Hlth, Mol Oncol Grp, Montreal, PQ H3A 1A1, Canada
关键词
histone acetylation; protein acetylation; histone deacetylase; 14-3-3; proteins;
D O I
10.1139/bcb-79-3-243
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Acetylation of histones, as well as non-histone proteins, plays important roles in regulating various cellular processes. Dynamic control of protein acetylation levels in vivo occurs through the opposing actions of histone acetyltransferases and histone deacetylases (HDACs). In the past few years, distinct classes of HDACs have been identified in mammalian cells. Class I members, such as HDAC1, HDAC2, HDAC3, and HDAC8, are well-known enzymatic transcriptional corepressors homologous to yeast Rpd3. Class II members, including HDAC4, HDAC5, HDAC6, HDAC7, and HDAC9, possess domains similar to the deacetylase domain of yeast Hda1. HDAC4, HDAC5, and HDAC7 function as transcriptional corepressors that interact with the MEF2 transcription factors and the N-CoR, BCoR, and CtBP corepressors. Intriguingly, HDAC4, HDAC5, and probably HDAC7 are regulated through subcellular compartmentalization controlled by site-specific phosphorylation and binding of 14-3-3 proteins; the regulation of these HDACs is thus directly linked to cellular signaling networks. Both HDAC6 and HDAC9 possess unique structural modules, so they may have special biological functions. Comprehension of the structure, function, and regulation of class II deacetylases is important for elucidating how acetylation regulates functions of histones and other proteins in vivo.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 93 条
[1]   THE POZ DOMAIN - A CONSERVED PROTEIN-PROTEIN INTERACTION MOTIF [J].
BARDWELL, VJ ;
TREISMAN, R .
GENES & DEVELOPMENT, 1994, 8 (14) :1664-1677
[2]   Histone H4 acetylation and replication timing in Chinese hamster chromosomes [J].
Belyaev, ND ;
Keohane, AM ;
Turner, BM .
EXPERIMENTAL CELL RESEARCH, 1996, 225 (02) :277-285
[3]   Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins [J].
Black, BL ;
Olson, EN .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :167-196
[4]   The many HATs of transcription coactivators [J].
Brown, CE ;
Lechner, T ;
Howe, L ;
Workman, JL .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (01) :15-19
[5]   Special HATs for special occasions: Linking histone acetylation to chromatin assembly and gene activation [J].
Brownell, JE ;
Allis, CD .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 1996, 6 (02) :176-184
[6]   Cloning and characterization of a novel human histone deacetylase, HDAC8 [J].
Buggy, JJ ;
Sideris, ML ;
Mak, P ;
Lorimer, DD ;
McIntosh, B ;
Clark, JM .
BIOCHEMICAL JOURNAL, 2000, 350 :199-205
[7]   Co-repressors 2000 [J].
Burke, LJ ;
Baniahmad, A .
FASEB JOURNAL, 2000, 14 (13) :1876-1888
[8]   SODIUM BUTYRATE INHIBITS HISTONE DEACETYLATION IN CULTURED-CELLS [J].
CANDIDO, EPM ;
REEVES, R ;
DAVIE, JR .
CELL, 1978, 14 (01) :105-113
[9]   Yeast HOS3 forms a novel trichostatin A-insensitive homodimer with intrinsic histone deacetylase activity [J].
Carmen, AA ;
Griffin, PR ;
Calaycay, JR ;
Rundlett, SE ;
Suka, Y ;
Grunstein, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (22) :12356-12361
[10]   HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex [J].
Carmen, AA ;
Rundlett, SE ;
Grunstein, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (26) :15837-15844