Bacterial Communities of Diverse Drosophila Species: Ecological Context of a Host-Microbe Model System

被引:544
作者
Chandler, James Angus [1 ]
Lang, Jenna Morgan [1 ,2 ,3 ,4 ]
Bhatnagar, Srijak [2 ]
Eisen, Jonathan A. [1 ,2 ,3 ,4 ]
Kopp, Artyom [1 ]
机构
[1] Univ Calif Davis, Dept Ecol & Evolut, Ctr Populat Biol, Davis, CA 95616 USA
[2] Univ Calif Davis, UC Davis Genome Ctr, Davis, CA 95616 USA
[3] Univ Calif Davis, Sch Med, Dept Med Microbiol & Immunol, Davis, CA 95616 USA
[4] US DOE, Joint Genome Inst, Walnut Creek, CA USA
来源
PLOS GENETICS | 2011年 / 7卷 / 09期
关键词
PSEUDOMONAS-AERUGINOSA; GUT MICROBIOTA; FRUIT-FLY; SUBFAMILY LACHNINAE; NATURAL-POPULATIONS; AMANITIN TOLERANCE; OBLIGATE SYMBIONT; GENOME SEQUENCE; IMMUNE-RESPONSE; APIS-MELLIFERA;
D O I
10.1371/journal.pgen.1002272
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Drosophila melanogaster is emerging as an important model of non-pathogenic host-microbe interactions. The genetic and experimental tractability of Drosophila has led to significant gains in our understanding of animal-microbial symbiosis. However, the full implications of these results cannot be appreciated without the knowledge of the microbial communities associated with natural Drosophila populations. In particular, it is not clear whether laboratory cultures can serve as an accurate model of host-microbe interactions that occur in the wild, or those that have occurred over evolutionary time. To fill this gap, we characterized natural bacterial communities associated with 14 species of Drosophila and related genera collected from distant geographic locations. To represent the ecological diversity of Drosophilids, examined species included fruit-, flower-, mushroom-, and cactus-feeders. In parallel, wild host populations were compared to laboratory strains, and controlled experiments were performed to assess the importance of host species and diet in shaping bacterial microbiome composition. We find that Drosophilid flies have taxonomically restricted bacterial communities, with 85% of the natural bacterial microbiome composed of only four bacterial families. The dominant bacterial taxa are widespread and found in many different host species despite the taxonomic, ecological, and geographic diversity of their hosts. Both natural surveys and laboratory experiments indicate that host diet plays a major role in shaping the Drosophila bacterial microbiome. Despite this, the internal bacterial microbiome represents only a highly reduced subset of the external bacterial communities, suggesting that the host exercises some level of control over the bacteria that inhabit its digestive tract. Finally, we show that laboratory strains provide only a limited model of natural host-microbe interactions. Bacterial taxa used in experimental studies are rare or absent in wild Drosophila populations, while the most abundant associates of natural Drosophila populations are rare in the lab.
引用
收藏
页数:18
相关论文
共 105 条
[1]   Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia [J].
Akman, L ;
Yamashita, A ;
Watanabe, H ;
Oshima, K ;
Shiba, T ;
Hattori, M ;
Aksoy, S .
NATURE GENETICS, 2002, 32 (03) :402-407
[2]  
[Anonymous], ENTEROBACTERIA
[3]   Profiling early infection responses:: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression [J].
Apidianakis, Y ;
Mindrinos, MN ;
Xiao, WZ ;
Lau, GW ;
Baldini, RL ;
Davis, RW ;
Rahme, LG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (07) :2573-2578
[4]   ACETIC-ACID BACTERIAL BIOTA OF THE PINK SUGAR-CANE MEALYBUG, SACCHAROCOCCUS-SACCHARI, AND ITS ENVIRONS [J].
ASHBOLT, NJ ;
INKERMAN, PA .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1990, 56 (03) :707-712
[5]   Suppression of Drosophila cellular immunity by directed expression of the ExoS toxin GAP domain of Pseudomonas aeruginosa [J].
Avet-Rochex, A ;
Bergeret, E ;
Attree, I ;
Meister, M ;
Fauvarque, MO .
CELLULAR MICROBIOLOGY, 2005, 7 (06) :799-810
[6]   Bacterial community structures in honeybee intestines and their response to two insecticidal proteins [J].
Babendreier, Dirk ;
Joller, David ;
Romeis, Joerg ;
Bigler, Franz ;
Widmer, Franco .
FEMS MICROBIOLOGY ECOLOGY, 2007, 59 (03) :600-610
[7]   Review and re-analysis of domain-specific 16S primers [J].
Baker, GC ;
Smith, JJ ;
Cowan, DA .
JOURNAL OF MICROBIOLOGICAL METHODS, 2003, 55 (03) :541-555
[8]   The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response [J].
Basset, A ;
Khush, RS ;
Braun, A ;
Gardan, L ;
Boccard, F ;
Hoffmann, JA ;
Lemaitre, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3376-3381
[9]   A single gene that promotes interaction of a phytopathogenic bacterium with its insect vector, Drosophila melanogaster [J].
Basset, A ;
Tzou, P ;
Lemaitre, B ;
Boccard, F .
EMBO REPORTS, 2003, 4 (02) :205-209
[10]   Bacterial diversity in the oral cavity of 10 healthy individuals [J].
Bik, Elisabeth M. ;
Long, Clara Davis ;
Armitage, Gary C. ;
Loomer, Peter ;
Emerson, Joanne ;
Mongodin, Emmanuel F. ;
Nelson, Karen E. ;
Gill, Steven R. ;
Fraser-Liggett, Claire M. ;
Relman, David A. .
ISME JOURNAL, 2010, 4 (08) :962-974