Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition

被引:288
作者
Su, Ching-Yuan [1 ]
Lu, Ang-Yu [1 ,2 ]
Wu, Chih-Yu [1 ]
Li, Yi-Te [3 ,4 ]
Liu, Keng-Ku [1 ]
Zhang, Wenjing [1 ]
Lin, Shi-Yen [1 ]
Juang, Zheng-Yu [1 ]
Zhong, Yuan-Liang [3 ,4 ]
Chen, Fu-Rong [2 ]
Li, Lain-Jong [1 ,5 ]
机构
[1] Acad Sinica, Res Ctr Appl Sci, Taipei 11529, Taiwan
[2] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 300, Taiwan
[3] Chung Yuan Christian Univ, Dept Phys, Chungli 32023, Taiwan
[4] Chung Yuan Christian Univ, Ctr Nanotechnol, Chungli 32023, Taiwan
[5] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan
关键词
Graphene; chemical vapor deposition; Raman spectroscopy; transparent conductive film; graphitization; TRANSISTORS; REDUCTION; FILMS;
D O I
10.1021/nl201362n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Direct formation of high-quality and wafer scale graphene thin layers on insulating gate dielectrics such as SiO2 is emergent for graphene electronics using Si-wafer compatible fabrication. Here, we report that in a chemical vapor deposition process the carbon species dissociated on Cu surfaces not only result in graphene layers on top of the catalytic Cu thin films but also diffuse through Cu grain boundaries to the interface between Cu and underlying dielectrics. Optimization of the process parameters leads to a continuous and large-area graphene thin layers directly formed on top of the dielectrics. The bottom-gated transistor characteristics for the graphene films have shown quite comparable carrier mobility compared to the top-layer graphene. The proposed method allows us to achieve wafer-sized graphene on versatile insulating substrates without the need of graphene transfer.
引用
收藏
页码:3612 / 3616
页数:5
相关论文
共 37 条
[1]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[2]   Graphenes Converted from Polymers [J].
Byun, Sun-Jung ;
Lim, Hyunseob ;
Shin, Ga-Young ;
Han, Tae-Hee ;
Oh, Sang Ho ;
Ahn, Jong-Hyun ;
Choi, Hee Cheul ;
Lee, Tae-Woo .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (05) :493-497
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Structural coherency of graphene on Ir(111) [J].
Coraux, Johann ;
N'Diaye, Alpha T. ;
Busse, Carsten ;
Michely, Thomas .
NANO LETTERS, 2008, 8 (02) :565-570
[5]   Langmuir-Blodgett Assembly of Graphite Oxide Single Layers [J].
Cote, Laura J. ;
Kim, Franklin ;
Huang, Jiaxing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (03) :1043-1049
[6]   Surface Potentials and Layer Charge Distributions in Few-Layer Graphene Films [J].
Datta, Sujit S. ;
Strachan, Douglas R. ;
Mele, E. J. ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (01) :7-11
[7]   Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study [J].
Emtsev, K. V. ;
Speck, F. ;
Seyller, Th. ;
Ley, L. ;
Riley, J. D. .
PHYSICAL REVIEW B, 2008, 77 (15)
[8]  
Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation [J].
Green, Alexander A. ;
Hersam, Mark C. .
NANO LETTERS, 2009, 9 (12) :4031-4036