Multi-level minimal residual smoothing: a family of general purpose multigrid acceleration techniques

被引:6
作者
Zhang, J [1 ]
机构
[1] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA
关键词
minimal residual smoothing; multigrid method; residual scaling techniques;
D O I
10.1016/S0377-0427(98)00133-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We employ multi-level minimal residual smoothing (MRS) as a pre-optimization technique to accelerate standard multigrid convergence. The MRS method is used to improve the current multigrid iterate by smoothing its corresponding residual before the latter is projected to the coarse grid. We develop different schemes for implementing MRS technique on the finest grid and on the coarse grids, and several versions of the inexact MRS technique. Numerical experiments are conducted to show the efficiency of the multi-level and inexact MRS techniques. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:41 / 51
页数:11
相关论文
共 16 条
[1]   ACCELERATED MULTIGRID CONVERGENCE AND HIGH-REYNOLDS RECIRCULATING-FLOWS [J].
BRANDT, A ;
YAVNEH, I .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (03) :607-626
[2]   ON RECOMBINING ITERANTS IN MULTIGRID ALGORITHMS AND PROBLEMS WITH SMALL ISLANDS [J].
BRANDT, A ;
MIKULINSKY, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (01) :20-28
[3]   HYBRID PROCEDURES FOR SOLVING LINEAR-SYSTEMS [J].
BREZINSKI, C ;
REDIVOZAGLIA, M .
NUMERISCHE MATHEMATIK, 1994, 67 (01) :1-19
[4]   A SINGLE CELL HIGH-ORDER SCHEME FOR THE CONVECTION DIFFUSION EQUATION WITH VARIABLE-COEFFICIENTS [J].
GUPTA, MM ;
MANOHAR, RP ;
STEPHENSON, JW .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1984, 4 (07) :641-651
[5]   ANALYSIS OF A DAMPED NONLINEAR MULTILEVEL METHOD [J].
HACKBUSCH, W ;
REUSKEN, A .
NUMERISCHE MATHEMATIK, 1989, 55 (02) :225-246
[6]  
MIKA S, 1992, APPL MATH, V37, P13
[7]   FOURIER-ANALYSIS OF A ROBUST MULTIGRID METHOD FOR CONVECTION-DIFFUSION EQUATIONS [J].
REUSKEN, A .
NUMERISCHE MATHEMATIK, 1995, 71 (03) :365-397
[8]  
REUSKEN A, 1991, NUMER MATH, V58, P819
[9]  
SCHONAUER W, 1987, SCI COMPUTING VECTOR
[10]  
WEISS R., 1990, THESIS U KARLSRUHE G