NMR-detected order in core residues of denatured bovine pancreatic trypsin inhibitor

被引:20
作者
Barbar, E [1 ]
Hare, M
Makokha, M
Barany, G
Woodward, C
机构
[1] Ohio Univ, Dept Chem & Biochem, Athens, OH 45701 USA
[2] Univ Minnesota, Dept Biochem, St Paul, MN 55108 USA
[3] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
关键词
D O I
10.1021/bi010483z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The NMR characteristics of [14-38](Abu), a synthetic variant of BPTI that is partially folded in aqueous buffer near neutral pH, support a model of early folding events which begin with stabilization of the nativelike, slow exchange core [Barbar, E., Hare, M., Daragan, V., Barany, G., and Woodward, C. (1998) Biochemistry 37, 7822-7833 (1)]. In partially folded [14-38]Abu, urea denaturation profiles for representative amide protons show that global unfolding is non-two-state and that core residues require a higher concentration of urea to unfold. Dynamic properties of pH-denatured [14-38](Abu) and fully reduced and unfolded BPTI analogue were determined from heteronuclear NMR relaxation measurements at similar solution conditions. Differences at various sites in the polypeptide chain were evaluated from spectral density functions determined from T-1, T-2, and steady-state heteronuclear NOE data. Although denatured [14-38](Abu), contains no persistent secondary structure, its most ordered residues are those that, in native BPTI fold into the slow exchange core. The fully reduced analogue is significantly more mobile and shows less heterogeneous dynamics, but at 1 degreesC, restricted motion is observed for residues in the central segments of the polypeptide chain. These observations indicate that there is a developing core or cores even in highly unfolded species. Apparently the effect of 14-38 disulfide on unfolded BPTI is to preferentially order and stabilize residues in the core.
引用
收藏
页码:9734 / 9742
页数:9
相关论文
共 39 条
[11]   Protein folding mechanisms: new methods and emerging ideas [J].
Brockwell, DJ ;
Smith, DA ;
Radford, SE .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (01) :16-25
[12]   Motional model analyses of protein and peptide dynamics using C-13 and N-15 NMR relaxation [J].
Daragan, VA ;
Mayo, KH .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 1997, 31 :63-105
[13]   From Levinthal to pathways to funnels [J].
Dill, KA ;
Chan, HS .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (01) :10-19
[14]  
Dobson CM, 1998, ANGEW CHEM INT EDIT, V37, P868, DOI 10.1002/(SICI)1521-3773(19980420)37:7<868::AID-ANIE868>3.0.CO
[15]  
2-H
[16]   Equilibrium NMR studies of unfolded and partially folded proteins [J].
Dyson, HJ ;
Wright, PE .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (Suppl 7) :499-503
[17]   Design challenges for hemoproteins: The solution structure of apocytochrome b(5) [J].
Falzone, CJ ;
Mayer, MR ;
Whiteman, EL ;
Moore, CD ;
Lecomte, JTJ .
BIOCHEMISTRY, 1996, 35 (21) :6519-6526
[18]   SPECTRAL DENSITY-FUNCTION MAPPING USING N-15 RELAXATION DATA EXCLUSIVELY [J].
FARROW, NA ;
ZHANG, OW ;
SZABO, A ;
TORCHIA, DA ;
KAY, LE .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (02) :153-162
[19]   Characterization of the backbone dynamics of folded and denatured states of an SH3 domain [J].
Farrow, NA ;
Zhang, OW ;
FormanKay, JD ;
Kay, LE .
BIOCHEMISTRY, 1997, 36 (09) :2390-2402
[20]   COMPARISON OF THE BACKBONE DYNAMICS OF A FOLDED AND AN UNFOLDED SH3 DOMAIN EXISTING IN EQUILIBRIUM IN AQUEOUS BUFFER [J].
FARROW, NA ;
ZHANG, OW ;
FORMANKAY, JD ;
KAY, LE .
BIOCHEMISTRY, 1995, 34 (03) :868-878