Aspects of total variation regularized L1 function approximation

被引:476
作者
Chan, TF [1 ]
Esedoglu, S [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
total variation; denoising; scale space;
D O I
10.1137/040604297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The total variation-based image denoising model of Rudin, Osher, and Fatemi [Phys. D, 60, (1992), pp. 259-268] has been generalized and modified in many ways in the literature; one of these modi. cations is to use the L-1-norm as the fidelity term. We study the interesting consequences of this modi. cation, especially from the point of view of geometric properties of its solutions. It turns out to have interesting new implications for data-driven scale selection and multiscale image decomposition.
引用
收藏
页码:1817 / 1837
页数:21
相关论文
共 27 条
[1]   DIGITAL-FILTERS AS ABSOLUTE NORM REGULARIZERS [J].
ALLINEY, S .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1992, 40 (06) :1548-1562
[2]   AN ALGORITHM FOR THE MINIMIZATION OF MIXED L1 AND L2 NORMS WITH APPLICATION TO BAYESIAN-ESTIMATION [J].
ALLINEY, S ;
RUZINSKY, SA .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (03) :618-627
[3]   A property of the minimum vectors of a regularizing functional defined by means of the absolute norm [J].
Alliney, S .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (04) :913-917
[4]   Recursive median filters of increasing order: A variational approach [J].
Alliney, S .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (06) :1346-1354
[5]   The total variation flow in RN [J].
Bellettini, G ;
Caselles, V ;
Novaga, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :475-525
[6]   A MORPHOLOGICAL SCHEME FOR MEAN-CURVATURE MOTION AND APPLICATIONS TO ANISOTROPIC DIFFUSION AND MOTION OF LEVEL SETS [J].
CATTE, F ;
DIBOS, F ;
KOEPFLER, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (06) :1895-1909
[7]  
Chambolle A, 2004, J MATH IMAGING VIS, V20, P89
[8]  
CHEON E, 2002, NOISE REMOVAL PROJEC
[9]   Global total variation minimization [J].
Dibos, F ;
Koepfler, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (02) :646-664
[10]   Recovery of blocky images from noisy and blurred data [J].
Dobson, DC ;
Santosa, F .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (04) :1181-1198