Quantum chemical modeling of the dehalogenation reaction of haloalcohol dehalogenase

被引:72
作者
Hopmann, Kathrin H. [1 ]
Himo, Fahmi [1 ]
机构
[1] AlbaNova Univ Ctr, Dept Theoret Chem, Sch Biotechnol, Royal Inst Technol, SE-10691 Stockholm, Sweden
关键词
D O I
10.1021/ct8000443
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dehalogenation reaction of haloalcohol dehalogenase HheC from Agrobacterium radiobacter AD1 was investigated theoretically using hybrid density functional theory methods. HheC catalyzes the enantioselective conversion of halohydrins into their corresponding epoxides. The reaction is proposed to be mediated by a catalytic Ser132-Tyr145-Arg149 triad, and a distinct halide binding site is suggested to facilitate halide displacement by stabilizing the free ion. We investigated the HheC-mediated dehalogenation of (R)-2-chloro-1-phenylethanol using three quantum chemical models of various sizes. The calculated barriers and reaction energies give support to the suggested reaction mechanism. The dehalogenation occurs in a single concerted step, in which Tyr145 abstracts a proton from the halohydrin substrate and the substrate oxyanion displaces the chloride ion, forming the epoxide. Characterization of the involved stationary points is provided. Furthermore, by using three different models of the halide binding site, we are able to assess the adopted modeling methodology.
引用
收藏
页码:1129 / 1137
页数:9
相关论文
共 43 条
[1]   INCORPORATION OF SOLVENT EFFECTS INTO DENSITY-FUNCTIONAL CALCULATIONS OF MOLECULAR-ENERGIES AND GEOMETRIES [J].
ANDZELM, J ;
KOLMEL, C ;
KLAMT, A .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (21) :9312-9320
[2]   Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model [J].
Barone, V ;
Cossi, M .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (11) :1995-2001
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .1. THE EFFECT OF THE EXCHANGE-ONLY GRADIENT CORRECTION [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (03) :2155-2160
[5]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .2. THE EFFECT OF THE PERDEW-WANG GENERALIZED-GRADIENT CORRELATION CORRECTION [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (12) :9173-9177
[6]   A quantum chemical approach to the study of reaction mechanisms of redox-active metalloenzymes [J].
Blomberg, MRA ;
Siegbahn, PEM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (39) :9375-9386
[7]   Theoretical study of the phosphotriesterase reaction mechanism [J].
Chen, Shi-Lu ;
Fang, Wei-Hai ;
Himo, Fahmi .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (06) :1253-1255
[8]   Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model [J].
Cossi, M ;
Rega, N ;
Scalmani, G ;
Barone, V .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (06) :669-681
[9]   Structure and mechanism of a bacterial haloalcohol dehalogenase: a new variation of the short-chain dehydrogenase/reductase fold without an NAD(P)H binding site [J].
de Jong, RM ;
Tiesinga, JJW ;
Rozeboom, HJ ;
Kalk, KH ;
Tang, L ;
Janssen, DB ;
Dijkstra, BW .
EMBO JOURNAL, 2003, 22 (19) :4933-4944
[10]   Sequential kinetic resolution catalyzed by halohydrin dehalogenase [J].
Elenkov, Maja Majeric ;
Tang, Lixia ;
Hauer, Bernhard ;
Janssen, Dick B. .
ORGANIC LETTERS, 2006, 8 (19) :4227-4229