Mixed quantum/classical dynamics of hydrogen transfer reactions

被引:75
作者
Hammes-Schiffer, S [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
关键词
D O I
10.1021/jp983246n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This article presents the methodology we have developed for the simulation of hydrogen transfer reactions, including multiple proton transfer and proton-coupled electron transfer reactions. The central method discussed is molecular dynamics with quantum transitions (MDQT), which is a mixed quantum/classical surface hopping method that incorporates nonadiabatic transitions between the proton vibrational and/or electronic states. The advantages of MDQT are that it accurately describes branching processes (i.e., processes involving multiple pathways), is valid in the adiabatic and nonadiabatic Limits and the intermediate regime, and provides realtime dynamical information. The multiconfigurational MDQT (MC-MDQT) method combines MDQT with an MC-SCF formulation of the vibrational modes for the simulation of processes involving multiple quantum modes (e.g., for multiple proton transfer reactions). MC-MDQT incorporates the significant correlation between the quantum modes in a computationally practical way and has been applied to proton transport along water chains. The EV-MDQT method incorporates transitions between mixed electronic/proton vibrational adiabatic states, which are calculated in a way that removes the standard double adiabatic approximation. EV-MDQT has been applied to model proton-coupled electron transfer reactions. These new developments allow the simulation of a wide range of biologically and chemically important hydrogen transfer processes.
引用
收藏
页码:10443 / 10454
页数:12
相关论文
共 126 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]   STATISTICAL-THEORIES OF CHEMICAL REACTIONS - DISTRIBUTIONS IN TRANSITION REGION [J].
ANDERSON, JB .
JOURNAL OF CHEMICAL PHYSICS, 1973, 58 (10) :4684-4692
[3]   HCL ACID IONIZATION IN WATER - A THEORETICAL MOLECULAR MODELING [J].
ANDO, K ;
HYNES, JT .
JOURNAL OF MOLECULAR LIQUIDS, 1995, 64 (1-2) :25-37
[4]   SIMULATION OF ENZYME-REACTIONS USING VALENCE-BOND FORCE-FIELDS AND OTHER HYBRID QUANTUM-CLASSICAL APPROACHES [J].
AQVIST, J ;
WARSHEL, A .
CHEMICAL REVIEWS, 1993, 93 (07) :2523-2544
[5]   SEMICLASSICAL SURFACE-HOPPING APPROXIMATIONS FOR THE CALCULATION OF SOLVENT-INDUCED VIBRATIONAL-RELAXATION RATE CONSTANTS [J].
ARCE, JC ;
HERMAN, MF .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (09) :7520-7527
[6]   A QUANTUM MOLECULAR-DYNAMICS STUDY OF PROTON-TRANSFER REACTIONS ALONG ASYMMETRICAL H-BONDS IN SOLUTION [J].
AZZOUZ, H ;
BORGIS, D .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (09) :7361-7375
[7]   OXYGEN ACTIVATION AND THE CONSERVATION OF ENERGY IN CELL RESPIRATION [J].
BABCOCK, GT ;
WIKSTROM, M .
NATURE, 1992, 356 (6367) :301-309
[8]   WATER OXIDATION IN PHOTOSYSTEM .2. FROM RADICAL CHEMISTRY TO MULTIELECTRON CHEMISTRY [J].
BABCOCK, GT ;
BARRY, BA ;
DEBUS, RJ ;
HOGANSON, CW ;
ATAMIAN, M ;
MCINTOSH, L ;
SITHOLE, I ;
YOCUM, CF .
BIOCHEMISTRY, 1989, 28 (25) :9557-9565
[9]   APPLICATIONS OF QUANTUM-CLASSICAL AND QUANTUM STOCHASTIC MOLECULAR-DYNAMICS SIMULATIONS FOR PROTON-TRANSFER PROCESSES [J].
BALA, P ;
LESYNG, B ;
MCCAMMON, JA .
CHEMICAL PHYSICS, 1994, 180 (2-3) :271-285
[10]   Quantum-classical molecular dynamics simulations of proton transfer processes in molecular complexes and in enzymes [J].
Bala, P ;
Grochowski, P ;
Lesyng, B ;
McCammon, JA .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (07) :2535-2545