Autonomous materials synthesis via hierarchical active learning of nonequilibrium phase diagrams

被引:44
作者
Ament, Sebastian [1 ]
Amsler, Maximilian [2 ,3 ]
Sutherland, Duncan R. [2 ]
Chang, Ming-Chiang [2 ]
Guevarra, Dan [4 ]
Connolly, Aine B. [2 ]
Gregoire, John M. [4 ]
Thompson, Michael O. [2 ]
Gomes, Carla P. [1 ]
van Dover, R. Bruce [2 ]
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[3] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland
[4] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
来源
SCIENCE ADVANCES | 2021年 / 7卷 / 51期
基金
瑞士国家科学基金会;
关键词
RAPID IDENTIFICATION; MATERIALS DESIGN; MACHINE; PSEUDO-R-2; DISCOVERY;
D O I
10.1126/sciadv.abg4930
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Autonomous experimentation enabled by artificial intelligence offers a new paradigm for accelerating scientific discovery. Nonequilibrium materials synthesis is emblematic of complex, resource-intensive experimentation whose acceleration would be a watershed for materials discovery. We demonstrate accelerated exploration of metastable materials through hierarchical autonomous experimentation governed by the Scientific Autonomous Reasoning Agent (SARA). SARA integrates robotic materials synthesis using lateral gradient laser spike annealing and optical characterization along with a hierarchy of AI methods to map out processing phase diagrams. Efficient exploration of the multidimensional parameter space is achieved with nested active learning cycles built upon advanced machine learning models that incorporate the underlying physics of the experiments and end-to-end uncertainty quantification. We demonstrate SARA's performance by autonomously mapping synthesis phase boundaries for the Bi2O3 system, leading to orders-of-magnitude acceleration in the establishment of a synthesis phase diagram that includes conditions for stabilizing delta-Bi2O3 at room temperature, a critical development for electrochemical technologies.
引用
收藏
页数:12
相关论文
共 72 条
[1]  
Ahmed M. O., 2016, NIPS BayesOpt
[2]   The 2019 materials by design roadmap [J].
Alberi, Kirstin ;
Nardelli, Marco Buongiorno ;
Zakutayev, Andriy ;
Mitas, Lubos ;
Curtarolo, Stefano ;
Jain, Anubhav ;
Fornari, Marco ;
Marzari, Nicola ;
Takeuchi, Ichiro ;
Green, Martin L. ;
Kanatzidis, Mercouri ;
Toney, Mike F. ;
Butenko, Sergiy ;
Meredig, Bryce ;
Lany, Stephan ;
Kattner, Ursula ;
Davydov, Albert ;
Toberer, Eric S. ;
Stevanovic, Vladan ;
Walsh, Aron ;
Park, Nam-Gyu ;
Aspuru-Guzik, Alan ;
Tabor, Daniel P. ;
Nelson, Jenny ;
Murphy, James ;
Setlur, Anant ;
Gregoire, John ;
Li, Hong ;
Xiao, Ruijuan ;
Ludwig, Alfred ;
Martin, Lane W. ;
Rappe, Andrew M. ;
Wei, Su-Huai ;
Perkins, John .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (01)
[3]   Kernels for Vector-Valued Functions: A Review [J].
Alvarez, Mauricio A. ;
Rosasco, Lorenzo ;
Lawrence, Neil D. .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (03) :195-266
[4]   The fast azimuthal integration Python']Python library: pyFAI [J].
Ashiotis, Giannis ;
Deschildre, Aurore ;
Nawaz, Zubair ;
Wright, Jonathan P. ;
Karkoulis, Dimitrios ;
Picca, Frederic Emmanuel ;
Kieffer, Jerome .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2015, 48 :510-519
[5]   Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning [J].
Balachandran, Prasanna V. ;
Kowalski, Benjamin ;
Sehirlioglu, Alp ;
Lookman, Turab .
NATURE COMMUNICATIONS, 2018, 9
[6]   Rapid Identification of Synthetic Routes to Functional Metastable Phases Using X-ray Probed Laser Anneal Mapping (XPLAM) Time- Temperature Quench Maps [J].
Bell, Robert T. ;
Beaucage, Peter A. ;
Murphy, Marc J. ;
Connolly, Aine B. ;
Wiesner, Ulrich ;
Ginley, David ;
Van Dover, R. Bruce ;
Thompson, Michael O. .
CHEMISTRY OF MATERIALS, 2021, 33 (12) :4328-4336
[7]   Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing [J].
Bell, Robert T. ;
Jacobs, Alan G. ;
Sorg, Victoria C. ;
Jung, Byungki ;
Hill, Megan O. ;
Treml, Benjamin E. ;
Thompson, Michael O. .
ACS COMBINATORIAL SCIENCE, 2016, 18 (09) :548-558
[8]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[9]  
Borisenko VictorE., 1997, MICRODEVICE PHYS FAB
[10]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605