Catalytic mechanism of limonene epoxide hydrolase, a theoretical study

被引:67
作者
Hopmann, KH
Hallberg, BM
Himo, F [1 ]
机构
[1] Royal Inst Technol, AlbaNova Univ Ctr, Dept Biotechnol, SE-10691 Stockholm, Sweden
[2] Karolinska Inst, Dept Med Biochem & Biophys, SE-17177 Stockholm, Sweden
关键词
D O I
10.1021/ja050940p
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The catalytic mechanism of limonene epoxide hydrolase (LEH) was investigated theoretically using the density functional theory method B3LYP. LEH is part of a novel limonene degradation pathway found in Rhodococcus erythropolis DCL14, where it catalyzes the hydrolysis of limonene-1,2-epoxide to give limonene-1,2-diol. The recent crystal structure of LEH was used to build a model of the LEH active site composed of five amino acids and a crystallographically observed water molecule. With this model, hydrolysis of different substrates was investigated. It is concluded that LEH employs a concerted general acid/general base-catalyzed reaction mechanism involving protonation of the substrate by Asp101, nucleophilic attack by water on the epoxide, and abstraction of a proton from water by Asp132. Furthermore, we provide an explanation for the experimentally observed regioselective hydrolysis of the four stereoisomers of limonene-1,2-epoxide.
引用
收藏
页码:14339 / 14347
页数:9
相关论文
共 32 条
[1]   INCORPORATION OF SOLVENT EFFECTS INTO DENSITY-FUNCTIONAL CALCULATIONS OF MOLECULAR-ENERGIES AND GEOMETRIES [J].
ANDZELM, J ;
KOLMEL, C ;
KLAMT, A .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (21) :9312-9320
[2]   Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site [J].
Arand, M ;
Hallberg, BM ;
Zou, JY ;
Bergfors, T ;
Oesch, F ;
van der Werf, MJ ;
de Bont, JAM ;
Jones, TA ;
Mowbray, SL .
EMBO JOURNAL, 2003, 22 (11) :2583-2592
[3]  
Arand M, 1996, J BIOL CHEM, V271, P4223
[4]   Binding of alkylurea inhibitors to epoxide hydrolase implicates active site tyrosines in substrate activation [J].
Argiriadi, MA ;
Morisseau, C ;
Goodrow, MH ;
Dowdy, DL ;
Hammock, BD ;
Christianson, DW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (20) :15265-15270
[5]   New structural and chemical insight into the catalytic mechanism of epoxide hydrolases [J].
Armstrong, RN ;
Cassidy, CS .
DRUG METABOLISM REVIEWS, 2000, 32 (3-4) :327-338
[6]   The Rhodococcus erythropolis DCL14 limonene-1,2-epoxide hydrolase gene encodes an enzyme belonging to a novel class of epoxide hydrolases [J].
Barbirato, F ;
Verdoes, JC ;
de Bont, JAM ;
van der Werf, MJ .
FEBS LETTERS, 1998, 438 (03) :293-296
[7]   Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model [J].
Barone, V ;
Cossi, M .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (11) :1995-2001
[8]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .1. THE EFFECT OF THE EXCHANGE-ONLY GRADIENT CORRECTION [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (03) :2155-2160
[9]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .2. THE EFFECT OF THE PERDEW-WANG GENERALIZED-GRADIENT CORRELATION CORRECTION [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (12) :9173-9177
[10]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652