Proprioceptive event related potentials: gating and task effects

被引:8
作者
Arnfred, SM [1 ]
机构
[1] Univ Copenhagen Hosp, Hvidovre Hosp, Dept Psychiat, DK-2605 Copenhagen, Denmark
关键词
proprioception; weight discrimination; somatosensory information processing; event related potential; orienting;
D O I
10.1016/j.clinph.2004.11.010
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Objective: The integration of proprioception with vision, touch or audition is considered basic to the developmental formation of perceptions, conceptual objects and the creation of cognitive schemes. Thus, mapping of proprioceptive information processing is important in cognitive research. A stimulus of a brisk change of weight on a hand held load elicit a proprioceptive evoked potential (PEP). Here this is used to examine early and late information processing related to weight discrimination by event related potentials (ERP). Methods: A gating paradigm having 1 s between the proprioceptive stimuli of 100 g weight increase was recorded in 12 runs of 40 pairs and an 1:4 oddball task of discriminating between 40 and 100 g weight increase was both recorded in 24 healthy men. The subjects were stratified in 3 groups according to their discrimination errors. Results: The proprioceptive event related potential (PERP) consisted of a contralateral parietal P60, frontal N70, midline P100, initial contralateral later widespread N160, vertex P200, parietal N290 and target related widespread P360 and posterior N500. The target related components were augmented in the best performers, while the bad performers had delayed P60 and attenuated N70. The amplitudes of N160, P200 and N290 were unrelated to performance. Gating was seen as attenuation of P100, N160 and P200 amplitude. Conclusions: The proprioceptive stimulus feature processing seem to be accomplished in the first 100 ms, while later components are modified by context as expected from previous findings in the somatosensory modality. Significance: The PERP could be a useful research tool in the investigation of bodily information processing in neuropsychiatric disorders. (c) 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:849 / 860
页数:12
相关论文
共 67 条
[31]   HUMAN SOMATOSENSORY EVOKED-POTENTIALS TO MECHANICAL PULSES AND VIBRATION - CONTRIBUTIONS OF SI-SOMATOSENSORY AND SII-SOMATOSENSORY CORTICES TO P50-COMPONENTS AND P100-COMPONENTS [J].
HAMALAINEN, H ;
KEKONI, J ;
SAMS, M ;
REINIKAINEN, K ;
NAATANEN, R .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1990, 75 (02) :13-21
[32]   INFLUENCE OF STIMULUS REPETITION RATE ON CORTICAL SOMATOSENSORY POTENTIALS-EVOKED BY MEDIAN NERVE-STIMULATION - IMPLICATIONS FOR GENERATION MECHANISMS [J].
HUTTUNEN, J ;
HOMBERG, V .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1991, 105 (01) :37-43
[33]   SOMATOSENSORY EVENT-RELATED POTENTIALS FOLLOWING DIFFERENT STIMULUS CONDITIONS [J].
ITO, J ;
SHIBASAKI, H ;
KIMURA, J .
INTERNATIONAL JOURNAL OF NEUROSCIENCE, 1992, 65 (1-4) :239-246
[34]  
JOHNSON D, 1975, EXP BRAIN RES, V22, P331
[35]   THE ATTENTION-RELATED SOMATOSENSORY EVOKED-POTENTIAL LATE POSITIVE WAVE IN PSYCHIATRIC-PATIENTS [J].
JOSIASSEN, RC ;
SHAGASS, C ;
ROEMER, RA ;
STRAUMANIS, JJ .
PSYCHIATRY RESEARCH, 1981, 5 (02) :147-155
[36]   Rate effect and mismatch responses in the somatosensory system: ERP-recordings in humans [J].
Kekoni, J ;
Hamalainen, H ;
Saarinen, M ;
Grohn, J ;
Reinikainen, K ;
Lehtokoski, A ;
Naatanen, R .
BIOLOGICAL PSYCHOLOGY, 1997, 46 (02) :125-142
[37]   FAST DECREMENT WITH STIMULUS REPETITION IN ERPS GENERATED BY NEURONAL SYSTEMS INVOLVING SOMATOSENSORY SI AND SII CORTICES - ELECTRIC AND MAGNETIC EVOKED-RESPONSE RECORDINGS IN HUMANS [J].
KEKONI, J ;
TIIHONEN, J ;
HAMALAINEN, H .
INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 1992, 12 (03) :281-288
[38]  
KEKONI J, 1998, THESIS U HELSINKI
[39]   Changes in the somatosensory N250 and P300 by the variation of reaction time [J].
Kida, T ;
Nishihira, Y ;
Hatta, A ;
Wasaka, T ;
Nakata, H ;
Sakamoto, M ;
Nakajima, T .
EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2003, 89 (3-4) :326-330
[40]  
McCloskey D I, 1983, Adv Neurol, V39, P151