Any generating set of an arbitrary property T von Neumann algebra has free entropy dimension ≤ 1

被引:15
作者
Jung, Kenley [1 ]
Shlyakhtenko, Dimitri [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
free probability; free entropy dimension; property T; von Neumann algebras; FREE PROBABILITY-THEORY; VONNEUMANN-ALGEBRAS; INFORMATION MEASURE; GROUP COHOMOLOGY; II1; FACTORS; SUBALGEBRAS; ANALOGS;
D O I
10.4171/JNCG/7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that N is a diffuse, property T von Neumann algebra and X is an arbitrary finite generating set of selfadjoint elements for N. By using rigidity/deformation arguments applied to representations of N in ultraproducts of full matrix algebras, we deduce that the microstate spaces of X are asymptotically discrete up to unitary conjugacy. We use this description to show that the free entropy dimension of X, delta(0) (X) is less than or equal to 1. It follows that when N embeds into the ultraproduct of the hyperfinite II(1) factor, then delta(0) (X) = 1 and otherwise, delta(0)(X) = -infinity. This generalizes the earlier results of Voiculescu, and Ge, Shen pertaining to SL(n)(Z) as well as the results of Connes, Shlyakhtenko pertaining to group generators of arbitrary property T algebras.
引用
收藏
页码:271 / 279
页数:9
相关论文
共 27 条
[1]  
[Anonymous], 2002, ERGEB MATH GRENZGEB
[2]   Group cohomology, harmonic functions and the first L-2-Betti number [J].
Bekka, MEB ;
Valette, A .
POTENTIAL ANALYSIS, 1997, 6 (04) :313-326
[3]   Large deviation bounds for matrix Brownian motion [J].
Biane, P ;
Capitaine, M ;
Guionnet, A .
INVENTIONES MATHEMATICAE, 2003, 152 (02) :433-459
[4]  
BROWN NP, 2005, INT MATH RES NO 0613, P1709
[5]   L2-COHOMOLOGY AND GROUP COHOMOLOGY [J].
CHEEGER, J ;
GROMOV, M .
TOPOLOGY, 1986, 25 (02) :189-215
[6]   SUB-ALGEBRAS OF A FINITE ALGEBRA [J].
CHRISTENSEN, E .
MATHEMATISCHE ANNALEN, 1979, 243 (01) :17-29
[7]   PROPERTY-T FOR VONNEUMANN-ALGEBRAS [J].
CONNES, A ;
JONES, V .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (JAN) :57-62
[8]  
Connes A, 2005, J REINE ANGEW MATH, V586, P125
[9]  
Connes A., 1980, J OPER THEORY, V4, P151
[10]  
Gaboriau D, 2000, INVENT MATH, V139, P41, DOI 10.1007/s002229900019