Group cohomology, harmonic functions and the first L-2-Betti number

被引:59
作者
Bekka, MEB [1 ]
Valette, A [1 ]
机构
[1] UNIV NEUCHATEL,INST MATH,CH-2007 NEUCHATEL,SWITZERLAND
关键词
group cohomology; ends; harmonic functions; L-2-cohomology;
D O I
10.1023/A:1017974406074
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an infinite, finitely generated group Gamma, we study the first cohomology group H-1(Gamma, lambda(Gamma)) with coefficients in the left regular representation lambda(Gamma) of Gamma on l(2)(Gamma). We first prove that H-1(Gamma, C Gamma) embeds into H-1(Gamma, lambda(Gamma)); as a consequence, if H-1(Gamma, lambda(Gamma)) = 0, then Gamma is not amenable with one end. For a Cayley graph X of Gamma, denote by HD(X) the space of harmonic functions on X with finite Dirichlet sum. We show that, if Gamma is not amenable, then there is a natural isomorphism between H-1(Gamma, lambda(Gamma)) and HD(X)/C (the latter space being isomorphic to the first L-2-cohomology space of Gamma). We draw the following consequences: (1) If Gamma has infinitely many ends, then HD(X) not equal C; (2) If Gamma has Kazhdan's property (T), then HD(X) = C; (3) The property H-1(Gamma, lambda(Gamma)) = 0 is a quasi-isometry invariant; (4) Either H-1(Gamma, lambda(Gamma)) = 0 or H-1(Gamma, lambda(Gamma)) is infinite-dimensional; (5) If Gamma = Gamma(1) x Gamma(2) with Gamma(1) non-amenable and Gamma(2) infinite, then H-1(Gamma, lambda(Gamma)) = 0.
引用
收藏
页码:313 / 326
页数:14
相关论文
共 38 条
[1]   ON THE FUNDAMENTAL GROUP OF A COMPACT KAHLER MANIFOLD [J].
ARAPURA, D ;
BRESSLER, P ;
RAMACHANDRAN, M .
DUKE MATHEMATICAL JOURNAL, 1992, 68 (03) :477-488
[2]  
BLANC P, 1979, ANN SCI ECOLE NORM S, V12, P137
[3]  
BOREL A, 1978, J REINE ANGEW MATH, V298, P53
[4]  
Borel A., 1980, Continuous cohomology, discrete subgroups, and representations of reductive groups, V94
[5]   INFINITE-GRAPHS WITH NONCONSTANT DIRICHLET FINITE HARMONIC-FUNCTIONS [J].
CARTWRIGHT, DI ;
WOESS, W .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1992, 5 (03) :380-385
[6]   PROPERTY (T) AND (A)OVER-BAR-2 GROUPS [J].
CARTWRIGHT, DI ;
MLOTKOWSKI, W ;
STEGER, T .
ANNALES DE L INSTITUT FOURIER, 1994, 44 (01) :213-248
[7]   L2-COHOMOLOGY AND GROUP COHOMOLOGY [J].
CHEEGER, J ;
GROMOV, M .
TOPOLOGY, 1986, 25 (02) :189-215
[8]  
CHEEGER J, 1985, J DIFFER GEOM, V21, P1
[9]   PROPERTY-T FOR VONNEUMANN-ALGEBRAS [J].
CONNES, A ;
JONES, V .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (JAN) :57-62
[10]   THE L2-INDEX THEOREM FOR HOMOGENEOUS SPACES OF LIE-GROUPS [J].
CONNES, A ;
MOSCOVICI, H .
ANNALS OF MATHEMATICS, 1982, 115 (02) :291-330