Self-focusing on bounded domains

被引:42
作者
Fibich, G [1 ]
Merle, F
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
[2] Inst Univ France, F-95302 Pontoise, Cergy Pontoise, France
[3] Univ Cergy Pontoise, F-95302 Pontoise, Cergy Pontoise, France
来源
PHYSICA D | 2001年 / 155卷 / 1-2期
关键词
nonlinear Schrodinger equation; singularity formation; waveguide; stability; collapse; blowup; hollow fiber; critical power;
D O I
10.1016/S0167-2789(01)00249-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The critical nonlinear Schrodinger equation (NLS) on bounded domains models the propagation of cw laser beams in hollow-core fibers. Unlike the NLS on unbounded domains which models propagation in bulk media, the ground-state waveguide solutions are stable and the condition of critical power for singularity formation is generically sharp. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:132 / 158
页数:27
相关论文
共 32 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
[2]  
BERESTYCKI H, 1983, CR ACAD SCI I-MATH, V297, P307
[3]  
Bourgain J, 1994, IMRN, V11, P475, DOI DOI 10.1155/S1073792894000516
[4]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[5]   Self-focusing in the damped nonlinear Schrodinger equation [J].
Fibich, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2001, 61 (05) :1680-1705
[6]   Self-focusing in the perturbed and unperturbed nonlinear Schrodinger equation in critical dimension [J].
Fibich, G ;
Papanicolaou, G .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1999, 60 (01) :183-240
[7]   Critical power for self-focusing in bulk media and in hollow waveguides [J].
Fibich, G ;
Gaeta, AL .
OPTICS LETTERS, 2000, 25 (05) :335-337
[8]   Self-focusing of elliptic beams: an example of the failure of the aberrationless approximation [J].
Fibich, G ;
Ilan, B .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2000, 17 (10) :1749-1758
[9]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[10]  
Gidas B., 1981, Math Anal Appl, Part A: Advances in Math Suppl Studied, V7, P369